Suppr超能文献

通过数据驱动建模和合成时间序列生成增强发酵过程监测

Enhancing Fermentation Process Monitoring through Data-Driven Modeling and Synthetic Time Series Generation.

作者信息

Kwon Hyun J, Shiu Joseph H, Yamakawa Celina K, Rivera Elmer C

机构信息

School of Engineering, Andrews University, Berrien Springs, MI 49104, USA.

Department of Computer Science, Andrews University, Berrien Springs, MI 49104, USA.

出版信息

Bioengineering (Basel). 2024 Aug 8;11(8):803. doi: 10.3390/bioengineering11080803.

Abstract

Soft sensors based on deep learning regression models are promising approaches to predict real-time fermentation process quality measurements. However, experimental datasets are generally sparse and may contain outliers or corrupted data. This leads to insufficient model prediction performance. Therefore, datasets with a fully distributed solution space are required that enable effective exploration during model training. In this study, the robustness and predictive capability of the underlying model of a soft sensor was improved by generating synthetic datasets for training. The monitoring of intensified ethanol fermentation is used as a case study. Variational autoencoders were employed to create synthetic datasets, which were then combined with original datasets (experimental) to train neural network regression models. These models were tested on original versus augmented datasets to assess prediction improvements. Using the augmented datasets, the soft sensor predictive capability improved by 34%, and variability was reduced by 82%, based on R scores. The proposed method offers significant time and cost savings for dataset generation for the deep learning modeling of ethanol fermentation and can be easily adapted to other fermentation processes. This work contributes to the advancement of soft sensor technology, providing practical solutions for enhancing reliability and robustness in large-scale production.

摘要

基于深度学习回归模型的软传感器是预测实时发酵过程质量指标的一种很有前景的方法。然而,实验数据集通常很稀疏,可能包含异常值或损坏的数据。这导致模型预测性能不足。因此,需要具有完全分布式解空间的数据集,以便在模型训练期间进行有效探索。在本研究中,通过生成用于训练的合成数据集,提高了软传感器基础模型的稳健性和预测能力。以强化乙醇发酵监测为例进行研究。采用变分自编码器创建合成数据集,然后将其与原始数据集(实验数据)相结合,训练神经网络回归模型。在原始数据集和增强数据集上对这些模型进行测试,以评估预测改进情况。基于R分数,使用增强数据集后,软传感器的预测能力提高了34%,变异性降低了82%。所提出的方法为乙醇发酵深度学习建模的数据集生成节省了大量时间和成本,并且可以轻松应用于其他发酵过程。这项工作有助于推动软传感器技术的发展,为提高大规模生产中的可靠性和稳健性提供了切实可行的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ddb/11351132/89bc908166ba/bioengineering-11-00803-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验