Suppr超能文献

人类病原体左旋肉碱降解途径的生化及结构解析

Biochemical and structural elucidation of the L-carnitine degradation pathway of the human pathogen .

作者信息

Piskol Fabian, Lukat Peer, Kaufhold Laurin, Heger Alexander, Blankenfeldt Wulf, Jahn Dieter, Moser Jürgen

机构信息

Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.

Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany.

出版信息

Front Microbiol. 2024 Aug 14;15:1446595. doi: 10.3389/fmicb.2024.1446595. eCollection 2024.

Abstract

is an opportunistic human pathogen which can use host-derived L-carnitine as sole carbon and energy source. Recently, an L-carnitine transporter (Aci1347) and a specific monooxygense (CntA/CntB) for the intracellular cleavage of L-carnitine have been characterized. Subsequent conversion of the resulting malic semialdehyde into the central metabolite L-malate was hypothesized. Alternatively, L-carnitine degradation via D-malate with subsequent oxidation into pyruvate was proposed. Here we describe the and reconstitution of the entire pathway, starting from the as yet uncharacterized gene products of the carnitine degradation gene operon. Using recombinantly purified enzymes, enantiomer-specific formation of D-malate by the NAD(P)-dependent malic semialdehyde dehydrogenase (MSA-DH) is demonstrated. The solved X-ray crystal structure of tetrameric MSA-DH reveals the key catalytic residues Cys and Glu, accessible through opposing substrate and cofactor funnels. Specific substrate binding is enabled by Arg, Arg and Ser while dual cofactor specificity for NAD and NADP is mediated by Asn. The subsequent conversion of the unusual D-malate reaction product by an uncharacterized NAD-dependent malate dehydrogenase (MDH) is shown. Tetrameric MDH is a β-decarboxylating dehydrogenase that synthesizes pyruvate. MDH experiments with alternative substrates showed a high degree of substrate specificity. Finally, the entire pathway was heterologously reconstituted, allowing to grow on L-carnitine as a carbon and energy source. Overall, the metabolic conversion of L-carnitine via malic semialdehyde and D-malate into pyruvate, CO and trimethylamine was demonstrated. Trimethylamine is also an important gut microbiota-dependent metabolite that is associated with an increased risk of cardiovascular disease. The pathway reconstitution experiments allowed us to assess the TMA forming capacity of gut microbes which is related to human cardiovascular health.

摘要

是一种机会性人类病原体,它可以利用宿主来源的左旋肉碱作为唯一的碳源和能源。最近,已对左旋肉碱转运蛋白(Aci1347)和用于细胞内裂解左旋肉碱的特定单加氧酶(CntA/CntB)进行了表征。推测由此产生的苹果酸半醛随后转化为中心代谢物L-苹果酸。另外,有人提出左旋肉碱通过D-苹果酸降解,随后氧化成丙酮酸。在这里,我们描述了从肉碱降解基因操纵子中尚未表征的基因产物开始的整个途径的 和 重建。使用重组纯化的酶,证明了NAD(P)依赖性苹果酸半醛脱氢酶(MSA-DH)对映体特异性形成D-苹果酸。四聚体MSA-DH的X射线晶体结构揭示了关键的催化残基Cys和Glu,可通过相对的底物和辅因子通道进入。Arg、Arg和Ser实现了特定的底物结合,而Asn介导了对NAD和NADP的双辅因子特异性。显示了由未表征的NAD依赖性苹果酸脱氢酶(MDH)对异常的D-苹果酸反应产物的后续转化。四聚体MDH是一种合成丙酮酸的β-脱羧脱氢酶。用替代底物进行的MDH实验显示出高度的底物特异性。最后,整个 途径被异源重建,使 能够以左旋肉碱作为碳源和能源生长。总体而言,证明了左旋肉碱通过苹果酸半醛和D-苹果酸代谢转化为丙酮酸、CO和三甲胺。三甲胺也是一种重要的肠道微生物群依赖性代谢物,与心血管疾病风险增加有关。途径重建实验使我们能够评估与人类心血管健康相关的肠道微生物产生TMA的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5806/11353897/148d89177e0b/fmicb-15-1446595-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验