Suppr超能文献

肺癌干预措施的预算影响模型:系统文献回顾。

Budget impact models for lung cancer interventions: A systematic literature review.

机构信息

The Swedish Institute for Health Economics, Lund, Sweden.

Medical Oncology Department 1, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy.

出版信息

J Manag Care Spec Pharm. 2024 Sep;30(9):1041-1056. doi: 10.18553/jmcp.2024.30.9.1041.

Abstract

BACKGROUND

Budget impact models (BIMs) forecast the financial implications of adopting new technologies and the potential need for budget reallocation, thus playing a crucial role in reimbursement decisions. Despite the importance of accurate forecasts, studies indicate large discrepancies between estimates and reality. We are developing an artificial intelligence-based clinical decision tool to identify patients with non-small cell lung cancer who are most likely to benefit from immunotherapy.

OBJECTIVE

To evaluate the budgetary implications and describe a systematic literature review of published lung cancer BIMs.

METHODS

We searched PubMed and EMBASE for studies published between 2010 and 2023 that include BIMs that describe lung cancer interventions. Forward and backward reference searches were performed for all qualifying studies. We extracted author and publication year, country, interventions, disease stages, time horizon, analytical perspective, modeling methods used, types of costs included, sensitivity analyses conducted, and data sources used. We then evaluated adherence to the Professional Society for Health Economics and Pharmacoeconomics Research best-practice guidelines.

RESULTS

A total of 25 BIMs were identified, spanning 14 different countries. Model structure could not be ascertained definitively for nearly half of the models. The cost calculator approach was most common among the others. Time horizons ranged from 1 to 5 years, in line with recommendations. Most models compared drugs, 4 compared nondrug interventions, and 7 compared diagnostic technologies. Assumptions about market uptake were poorly documented and poorly motivated. Inclusion of cancer-related costs was rare. Adherence to best practices was variable and did not appear to improve over time.

CONCLUSIONS

The number of published BIMs for lung cancer exceeded expectations. There were modest trends toward publication frequency and model quality over time. Our analysis revealed variability across the models, as well as their adherence to best practices, indicating substantial room for improvement. Although none of the models were individually suitable for the purpose of evaluating an artificial intelligence-based treatment selection tool, some models provided valuable insights.

摘要

背景

预算影响模型(BIM)预测采用新技术的财务影响和预算重新分配的潜在需求,因此在报销决策中发挥着关键作用。尽管准确预测很重要,但研究表明,估计值与实际值之间存在很大差异。我们正在开发一种基于人工智能的临床决策工具,以确定最有可能从免疫疗法中获益的非小细胞肺癌患者。

目的

评估预算影响,并对已发表的肺癌 BIM 进行系统文献回顾。

方法

我们在 PubMed 和 EMBASE 上搜索了 2010 年至 2023 年期间发表的包括描述肺癌干预措施的 BIM 的研究。对所有符合条件的研究进行了向前和向后的参考文献搜索。我们提取了作者和出版年份、国家、干预措施、疾病阶段、时间范围、分析视角、使用的建模方法、包括的成本类型、进行的敏感性分析以及使用的数据来源。然后,我们评估了对专业学会的健康经济学和药物经济学研究最佳实践指南的遵循情况。

结果

共确定了 25 个 BIM,涵盖了 14 个不同的国家。近一半的模型无法确定模型结构。其他模型中最常见的是成本计算器方法。时间范围从 1 年到 5 年,符合建议。大多数模型比较药物,4 个模型比较非药物干预,7 个模型比较诊断技术。市场占有率的假设记录和说明较差。很少包括癌症相关成本。对最佳实践的遵循情况各不相同,且似乎并没有随着时间的推移而改善。

结论

已发表的肺癌 BIM 数量超出预期。随着时间的推移,发表频率和模型质量呈适度趋势。我们的分析显示了模型之间的可变性,以及它们对最佳实践的遵循情况,表明有很大的改进空间。虽然没有一个模型适合单独评估基于人工智能的治疗选择工具,但一些模型提供了有价值的见解。

相似文献

8
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
9

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验