Shi Qingzhou, Zheng Kai, Li Haoyuan, Wang Bo, Liang Xiao, Li Xinyu, Wang Jianxin
IEEE/ACM Trans Comput Biol Bioinform. 2024 Nov-Dec;21(6):2179-2187. doi: 10.1109/TCBB.2024.3452055. Epub 2024 Dec 10.
Piwi-interacting RNAs (piRNAs) are increasingly recognized as potential biomarkers for various diseases. Investig-ating the complex relationship between piRNAs and diseases through computational methods can reduce the costs and risks associated with biological experiments. Fast kernel learning (FKL) is a classical method for multi-source data fusion that is widely employed in association prediction research. However, biological networks are noisy due to the limitations of measurement technology and inherent natural variation, which can hamper the effectiveness of the network-based ideal kernel. The conventional FKL method does not address this issue. In this study, we propose a low-rank fast kernel learning (LRFKL) algorithm, which consists of low-rank representation (LRR) and the FKL algorithm. The LRFKL algorithm is designed to mitigate the effects of noise on the network-based ideal kernel. Using LRFKL, we propose a novel approach for predicting piRNA-disease associations called LKLPDA. Specifically, we first compute the similarity matrices for piRNAs and diseases. Then we use the LRFKL to fuse the similarity matrices for piRNAs and diseases separately. Finally, the LKLPDA employs AutoGluon-Tabular for predictive analysis. Computational results show that LKLPDA effectively predicts piRNA-disease associations with higher accuracy compared to previous methods. In addition, case studies confirm the reliability of the model in predicting piRNA-disease associations.
Piwi相互作用RNA(piRNA)越来越被认为是各种疾病的潜在生物标志物。通过计算方法研究piRNA与疾病之间的复杂关系可以降低与生物学实验相关的成本和风险。快速核学习(FKL)是一种用于多源数据融合的经典方法,广泛应用于关联预测研究。然而,由于测量技术的局限性和固有的自然变异,生物网络存在噪声,这可能会妨碍基于网络的理想核的有效性。传统的FKL方法没有解决这个问题。在本研究中,我们提出了一种低秩快速核学习(LRFKL)算法,它由低秩表示(LRR)和FKL算法组成。LRFKL算法旨在减轻噪声对基于网络的理想核的影响。使用LRFKL,我们提出了一种预测piRNA-疾病关联的新方法,称为LKLPDA。具体来说,我们首先计算piRNA和疾病的相似性矩阵。然后我们使用LRFKL分别融合piRNA和疾病的相似性矩阵。最后,LKLPDA采用AutoGluon-Tabular进行预测分析。计算结果表明,与以前的方法相比,LKLPDA能够更准确地有效预测piRNA-疾病关联。此外,案例研究证实了该模型在预测piRNA-疾病关联方面的可靠性。