Suppr超能文献

知母皂苷元通过抑制TLR4介导的NF-κB信号通路抑制神经炎症并促进脊髓损伤后的功能恢复。

Phillygenin inhibits neuroinflammation and promotes functional recovery after spinal cord injury via TLR4 inhibition of the NF-κB signaling pathway.

作者信息

Zhang Yu, Xiao Shining, Dan Fan, Yao Geliang, Hong Shu'e, Liu Jiaming, Liu Zhili

机构信息

Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.

Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, China.

出版信息

J Orthop Translat. 2024 Aug 8;48:133-145. doi: 10.1016/j.jot.2024.07.013. eCollection 2024 Sep.

Abstract

BACKGROUND

Spinal cord injuries (SCIs) trigger a cascade of detrimental processes, encompassing neuroinflammation and oxidative stress (OS), ultimately leading to neuronal damage. Phillygenin (PHI), isolated from forsythia, is used in a number of biomedical applications, and is known to exhibit anti-neuroinflammation activity. In this study, we investigated the role and mechanistic ability of PHI in the activation of microglia-mediated neuroinflammation and subsequent neuronal apoptosis following SCI.

METHODS

A rat model of SCI was used to investigate the impact of PHI on inflammation, axonal regeneration, neuronal apoptosis, and the restoration of motor function. , neuroinflammation models were induced by stimulating microglia with lipopolysaccharide (LPS); then, we investigated the influence of PHI on pro-inflammatory mediator release in LPS-treated microglia along with the underlying mechanisms. Finally, we established a co-culture system, featuring microglia and VSC 4.1 cells, to investigate the role of PHI in the activation of microglia-mediated neuronal apoptosis.

RESULTS

, PHI significantly inhibited the inflammatory response and neuronal apoptosis while enhancing axonal regeneration and improving motor function recovery. PHI inhibited the release of inflammation-related factors from polarized BV2 cells in a dose-dependent manner. The online Swiss Target Prediction database predicted that toll-like receptor 4 (TLR4) was the target protein for PHI. In addition, Molecular Operating Environment software was used to perform molecular docking for PHI with the TLR4 protein; this resulted in a binding energy interaction of -6.7 kcal/mol. PHI inhibited microglia-mediated neuroinflammation, the production of reactive oxygen species (ROS), and activity of the NF-κb signaling pathway. PHI also increased mitochondrial membrane potential (MMP) in VSC 4.1 neuronal cells. In BV2 cells, PHI attenuated the overexpression of TLR4-induced microglial polarization and significantly suppressed the release of inflammatory cytokines.

CONCLUSION

PHI ameliorated SCI-induced neuroinflammation by modulating the TLR4/MYD88/NF-κB signaling pathway. PHI has the potential to be administered as a treatment for SCI and represents a novel candidate drug for addressing neuroinflammation mediated by microglial cells.

THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE

We demonstrated that PHI is a potential drug candidate for the therapeutic management of SCI with promising developmental and translational applications.

摘要

背景

脊髓损伤(SCI)引发一系列有害过程,包括神经炎症和氧化应激(OS),最终导致神经元损伤。从连翘中分离出的连翘酯苷(PHI)被用于多种生物医学应用,并且已知具有抗神经炎症活性。在本研究中,我们研究了PHI在SCI后小胶质细胞介导的神经炎症激活及随后的神经元凋亡中的作用和作用机制。

方法

使用SCI大鼠模型来研究PHI对炎症、轴突再生、神经元凋亡和运动功能恢复的影响。用脂多糖(LPS)刺激小胶质细胞诱导神经炎症模型;然后,我们研究了PHI对LPS处理的小胶质细胞中促炎介质释放的影响及其潜在机制。最后,我们建立了一个以小胶质细胞和VSC 4.1细胞为特征的共培养系统,以研究PHI在小胶质细胞介导的神经元凋亡激活中的作用。

结果

PHI显著抑制炎症反应和神经元凋亡,同时增强轴突再生并改善运动功能恢复。PHI以剂量依赖性方式抑制极化的BV2细胞中炎症相关因子的释放。在线瑞士靶标预测数据库预测Toll样受体4(TLR4)是PHI的靶蛋白。此外,使用分子操作环境软件对PHI与TLR4蛋白进行分子对接;这导致结合能相互作用为-6.7千卡/摩尔。PHI抑制小胶质细胞介导的神经炎症、活性氧(ROS)的产生以及NF-κB信号通路的活性。PHI还增加了VSC 4.1神经元细胞中的线粒体膜电位(MMP)。在BV2细胞中,PHI减弱了TLR4诱导的小胶质细胞极化的过表达,并显著抑制了炎性细胞因子的释放。

结论

PHI通过调节TLR4/MYD88/NF-κB信号通路改善SCI诱导的神经炎症。PHI有潜力作为SCI的治疗药物,是解决小胶质细胞介导的神经炎症的新型候选药物。

本文的转化潜力

我们证明PHI是SCI治疗管理的潜在候选药物,具有良好的开发和转化应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66f8/11363727/54875f38200a/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验