Niessink Tom, Jansen Tim L, Coumans Frank A W, Welting Tim J M, Janssen Matthijs, Otto Cees
Personalized Diagnostics and Therapeutics, Department of Bioengineering Technology, University of Twente, Enschede, The Netherlands.
Department of Rheumatology, VieCuri Medical Centre, Venlo, The Netherlands.
Rheumatology (Oxford). 2025 Apr 1;64(4):1791-1798. doi: 10.1093/rheumatology/keae472.
Raman spectroscopy is proposed as a next-generation method for the identification of monosodium urate (MSU) and calcium pyrophosphate (CPP) crystals in synovial fluid. As the interpretation of Raman spectra requires specific expertise, the method is not directly applicable for clinicians. We developed an approach to demonstrate that the identification process can be automated with the use of machine learning techniques. The developed system is tested in a point-of-care-setting at our outpatient rheumatology department.
We collected synovial fluid samples from 446 patients with various rheumatic diseases from three centres. We analysed all samples with our Raman spectroscope and used 246 samples for training and 200 samples for validation. Trained observers classified every Raman spectrum as MSU, CPP or other. We designed two one-against-all classifiers, one for MSU and one for CPP. These classifiers consisted of a principal component analysis model followed by a support vector machine.
The accuracy for classification of CPP using the 2023 ACR/EULAR CPPD classification criteria was 96.0% (95% CI: 92.3, 98.3), while the accuracy for classification of MSU using the 2015 ACR/EULAR gout classification criteria was 92.5% (95% CI: 87.9, 95.7). Overall, the accuracy for classification of pathological crystals was 88.0% (95% CI: 82.7, 92.2). The model was able to discriminate between pathological crystals, artifacts and other particles such as microplastics.
We here demonstrate that potentially complex Raman spectra from clinical patient samples can be successfully classified by a machine learning approach, resulting in an objective diagnosis independent of the opinion of the medical examiner.
拉曼光谱法被提议作为一种用于鉴定滑液中尿酸钠(MSU)和焦磷酸钙(CPP)晶体的下一代方法。由于拉曼光谱的解读需要特定的专业知识,该方法并非直接适用于临床医生。我们开发了一种方法来证明利用机器学习技术可以实现鉴定过程的自动化。所开发的系统在我们门诊风湿病科的即时检测环境中进行了测试。
我们从三个中心收集了446例患有各种风湿性疾病患者的滑液样本。我们用拉曼光谱仪分析了所有样本,并使用246个样本进行训练,200个样本进行验证。训练有素的观察者将每个拉曼光谱分类为MSU、CPP或其他。我们设计了两个一对多分类器,一个用于MSU,一个用于CPP。这些分类器由一个主成分分析模型和一个支持向量机组成。
使用2023年美国风湿病学会/欧洲抗风湿病联盟(ACR/EULAR)CPPD分类标准对CPP进行分类的准确率为96.0%(95%置信区间:92.3,98.3),而使用2015年ACR/EULAR痛风分类标准对MSU进行分类的准确率为92.5%(95%置信区间:87.9,95.7)。总体而言,病理性晶体分类的准确率为88.0%(95%置信区间:82.7,92.2)。该模型能够区分病理性晶体、伪像和其他颗粒,如微塑料。
我们在此证明,通过机器学习方法可以成功地对来自临床患者样本的潜在复杂拉曼光谱进行分类,从而得出独立于医学检查人员意见的客观诊断。