Suppr超能文献

使用基于机器学习算法的模型对收缩期心肌衰竭患者进行高钾血症的快速无创诊断。

Rapid and non-invasive diagnosis of hyperkalemia in patients with systolic myocardial failure using a model based on machine learning algorithms.

作者信息

Torshizi Hamid M, Khorgami Mohammad R, Omidi Negar, Khalaj Fattaneh, Ahmadi Mohsen

机构信息

Phd Student of Biomedical Engineering and Physics Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Rajaie Heart Center and Department of Pediatric Cardiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.

出版信息

J Family Med Prim Care. 2024 Aug;13(8):3393-3397. doi: 10.4103/jfmpc.jfmpc_2025_23. Epub 2024 Jul 26.

Abstract

BACKGROUND

Hyperkalemia is a potentially life-threatening electrolyte disturbance that if not diagnosed on time may lead to devastating conditions and sudden cardiac death. Blood sampling for potassium level checks is time-consuming and can delay the treatment of severe hyperkalemia on time. So, we propose a non-invasive method for correct and rapid hyperkalemia detection.

METHODS

The cardiac signal of patients referred to the Pediatrics Emergency room of Shahid Rejaee Hospital was measured by a 12-lead Philips electrocardiogram (ECG) device. Immediately, the blood samples of the patients were sent to the laboratory for potassium serum level determination. We defined 16 features for each cardiac signal at lead 2 and extracted them automatically using the algorithm developed. With the help of the principal component analysis (PCA) algorithm, the dimension reduction operation was performed. The algorithms of decision tree (DT), random forest (RF), logistic regression, and support vector machine (SVM) were used to classify serum potassium levels. Finally, we used the receiver operation characteristic (ROC) curve to display the results.

RESULTS

In the period of 5 months, 126 patients with a serum level above 4.5 (hyperkalemia) and 152 patients with a serum potassium level below 4.5 (normal potassium) were included in the study. Classification with the help of a RF algorithm has the best result. Accuracy, Precision, Recall, F1, and area under the curve (AUC) of this algorithm are 0.71, 0.87, 0.53, 0.66, and 0.69, respectively.

CONCLUSIONS

A lead2-based RF classification model may help clinicians to rapidly detect severe dyskalemias as a non-invasive method and prevent life-threatening cardiac conditions due to hyperkalemia.

摘要

背景

高钾血症是一种可能危及生命的电解质紊乱,如果不能及时诊断,可能会导致严重后果和心源性猝死。采集血样检测血钾水平耗时较长,可能会延误严重高钾血症的及时治疗。因此,我们提出一种用于准确快速检测高钾血症的非侵入性方法。

方法

使用飞利浦12导联心电图(ECG)设备测量转诊至沙希德·雷贾伊医院儿科急诊室患者的心脏信号。随后立即将患者的血样送去实验室测定血清钾水平。我们为导联2处的每个心脏信号定义了16个特征,并使用所开发的算法自动提取这些特征。借助主成分分析(PCA)算法进行降维操作。使用决策树(DT)、随机森林(RF)、逻辑回归和支持向量机(SVM)算法对血清钾水平进行分类。最后,我们使用受试者工作特征(ROC)曲线展示结果。

结果

在5个月的时间里,本研究纳入了126例血清水平高于4.5(高钾血症)的患者和152例血清钾水平低于4.5(血钾正常)的患者。借助RF算法进行分类的结果最佳。该算法的准确率、精确率、召回率、F1值和曲线下面积(AUC)分别为0.71、0.87、0.53、0.66和0.69。

结论

基于导联2的RF分类模型可能有助于临床医生作为一种非侵入性方法快速检测严重的钾代谢紊乱,并预防因高钾血症导致的危及生命的心脏疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d2c/11368260/44e3df0c2b15/JFMPC-13-3393-g001.jpg

相似文献

引用本文的文献

本文引用的文献

3
SciPy 1.0: fundamental algorithms for scientific computing in Python.SciPy 1.0:Python 中的科学计算基础算法。
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
9
Rehospitalization for heart failure: problems and perspectives.心力衰竭再住院治疗:问题与展望。
J Am Coll Cardiol. 2013 Jan 29;61(4):391-403. doi: 10.1016/j.jacc.2012.09.038. Epub 2012 Dec 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验