Department of Chemistry - BMC, Uppsala University, SE-75123 Uppsala, Sweden.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-17165 Solna, Sweden.
Anal Chem. 2024 Sep 17;96(37):15023-15030. doi: 10.1021/acs.analchem.4c03272. Epub 2024 Sep 4.
Native mass spectrometry (MS) is widely employed to study the structures and assemblies of proteins ranging from small monomers to megadalton complexes. Molecular dynamics (MD) simulation is a useful complement as it provides the spatial detail that native MS cannot offer. However, MD simulations performed in the gas phase have suffered from rapidly increasing computational costs with the system size. The primary bottleneck is the calculation of electrostatic forces, which are effective over long distances and must be explicitly computed for each atom pair, precluding efficient use of methods traditionally used to accelerate condensed-phase simulations. As a result, MD simulations have been unable to match the capacity of MS in probing large multimeric protein complexes. Here, we apply the fast multipole method (FMM) for computing the electrostatic forces, recently implemented by Kohnke et al. ( , , 6938-6949), showing that it significantly enhances the performance of gas-phase simulations of large proteins. We assess how to achieve adequate accuracy and optimal performance with FMM, finding that it expands the accessible size range and time scales dramatically. Additionally, we simulate a 460 kDa ferritin complex over microsecond time scales, alongside complementary ion mobility (IM)-MS experiments, uncovering conformational changes that are not apparent from the IM-MS data alone.
天然质谱(MS)广泛应用于研究从小分子单体到兆道尔顿复合物的蛋白质结构和组装。分子动力学(MD)模拟是一种有用的补充,因为它提供了天然 MS 无法提供的空间细节。然而,气相中的 MD 模拟受到系统尺寸的计算成本迅速增加的限制。主要的瓶颈是静电作用力的计算,这种作用力在长距离上有效,必须为每个原子对显式计算,排除了传统上用于加速凝聚相模拟的方法的有效使用。因此,MD 模拟无法与 MS 探测大的多聚体蛋白复合物的能力相匹配。在这里,我们应用快速多极方法(FMM)来计算静电作用力,这是由 Kohnke 等人最近实现的(,,6938-6949),表明它显著提高了大型蛋白质气相模拟的性能。我们评估了如何通过 FMM 实现足够的准确性和最佳性能,发现它极大地扩展了可访问的尺寸范围和时间尺度。此外,我们模拟了一个 460 kDa 的铁蛋白复合物,跨越微秒时间尺度,同时进行互补的离子迁移(IM)-MS 实验,揭示了仅从 IM-MS 数据无法明显看出的构象变化。