Suppr超能文献

Conv-RGNN:一种用于 ECG 分类的高效卷积残差图神经网络。

Conv-RGNN: An efficient Convolutional Residual Graph Neural Network for ECG classification.

机构信息

South China University of Technology, Guangzhou, 510641, China.

Key Laboratory of Digital Medical Engineering of Hebei Province, College of Electronic and Information Engineering, Hebei University, Baoding, 071002, China.

出版信息

Comput Methods Programs Biomed. 2024 Dec;257:108406. doi: 10.1016/j.cmpb.2024.108406. Epub 2024 Sep 3.

Abstract

BACKGROUND AND OBJECTIVE

Electrocardiogram (ECG) analysis is crucial in diagnosing cardiovascular diseases (CVDs). It is important to consider both temporal and spatial features in ECG analysis to improve automated CVDs diagnosis. Significant progress has been made in automated CVDs diagnosis based on ECG with the continuous development of deep learning. Current most researches often treat 12-lead ECG signals as synchronous sequences in Euclidean space, focusing primarily on extracting temporal features while overlooking the spatial relationships among the 12-lead. However, the spatial distribution of 12-lead ECG electrodes can be more naturally represented using non-Euclidean data structures, which makes the relationships among leads more consistent with their intrinsic characteristics.

METHODS

This study proposes an innovative method, Convolutional Residual Graph Neural Network (Conv-RGNN), for ECG classification. The first step is to segment the 12-lead ECG into twelve single-lead ECG, which are then mapped to nodes in a graph that captures the relationships between the different leads through spatial connections, resulting in the 12-lead ECG graph. The graph is then used as input for Conv-RGNN. A convolutional neural network with a position attention mechanism is used to extract temporal sequence information and selectively integrate contextual information to enhance semantic features at different positions. The spatial features of the 12-lead ECG graph are extracted using the residual graph neural network.

RESULTS

The experimental results indicate that Conv-RGNN is highly competitive in two multi-label datasets and one single-label dataset, demonstrating exceptional parameter efficiency, inference speed, model performance, and robustness.

CONCLUSION

The Conv-RGNN proposed in this paper offer a promising and feasible approach for intelligent diagnosis in resource-constrained environments.

摘要

背景与目的

心电图(ECG)分析在诊断心血管疾病(CVDs)中至关重要。在 ECG 分析中考虑时间和空间特征对于提高自动 CVDs 诊断非常重要。随着深度学习的不断发展,基于心电图的自动 CVDs 诊断已经取得了重大进展。目前大多数研究通常将 12 导联心电图信号视为欧几里得空间中的同步序列,主要侧重于提取时间特征,而忽略了 12 导联之间的空间关系。然而,使用非欧几里得数据结构可以更自然地表示 12 导联心电图电极的空间分布,从而使导联之间的关系更符合其固有特征。

方法

本研究提出了一种用于心电图分类的创新方法,卷积残差图神经网络(Conv-RGNN)。首先,将 12 导联心电图分段为 12 个单导联心电图,然后将其映射到图中的节点上,通过空间连接捕获不同导联之间的关系,从而得到 12 导联心电图图。然后,将该图作为 Conv-RGNN 的输入。使用具有位置注意力机制的卷积神经网络提取时间序列信息,并选择性地集成上下文信息,以增强不同位置的语义特征。使用残差图神经网络提取 12 导联心电图图的空间特征。

结果

实验结果表明,Conv-RGNN 在两个多标签数据集和一个单标签数据集上具有很高的竞争力,表现出出色的参数效率、推理速度、模型性能和鲁棒性。

结论

本文提出的 Conv-RGNN 为资源受限环境下的智能诊断提供了一种有前途且可行的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验