Suppr超能文献

基于预训练多模态生成模型的语义电磁反演

Semantic-Electromagnetic Inversion With Pretrained Multimodal Generative Model.

作者信息

Chen Yanjin, Zhang Hongrui, Ma Jie, Cui Tie Jun, Del Hougne Philipp, Li Lianlin

机构信息

State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing, 100871, China.

State Key Laboratory of Millimeter Waves, Southeast University, Nanjing, 210096, China.

出版信息

Adv Sci (Weinh). 2024 Nov;11(42):e2406793. doi: 10.1002/advs.202406793. Epub 2024 Sep 9.

Abstract

Across diverse domains of science and technology, electromagnetic (EM) inversion problems benefit from the ability to account for multimodal prior information to regularize their inherent ill-posedness. Indeed, besides priors that are formulated mathematically or learned from quantitative data, valuable prior information may be available in the form of text or images. Besides handling semantic multimodality, it is furthermore important to minimize the cost of adapting to a new physical measurement operator and to limit the requirements for costly labeled data. Here, these challenges are tackled with a frugal and multimodal semantic-EM inversion technique. The key ingredient is a multimodal generator of reconstruction results that can be pretrained, being agnostic to the physical measurement operator. The generator is fed by a multimodal foundation model encoding the multimodal semantic prior and a physical adapter encoding the measured data. For a new physical setting, only the lightweight physical adapter is retrained. The authors' architecture also enables a flexible iterative step-by-step solution to the inverse problem where each step can be semantically controlled. The feasibility and benefits of this methodology are demonstrated for three EM inverse problems: a canonical two-dimensional inverse-scattering problem in numerics, as well as three-dimensional and four-dimensional compressive microwave meta-imaging experiments.

摘要

在不同的科学技术领域,电磁(EM)反演问题受益于能够考虑多模态先验信息来规范其固有的不适定性。事实上,除了以数学方式表述或从定量数据中学习到的先验信息外,有价值的先验信息可能以文本或图像的形式存在。除了处理语义多模态外,尽量减少适应新的物理测量算子的成本并限制对昂贵标记数据的需求也很重要。在此,通过一种节俭的多模态语义电磁反演技术来应对这些挑战。关键要素是一个可以进行预训练的重建结果多模态生成器,它对物理测量算子不敏感。该生成器由编码多模态语义先验的多模态基础模型和编码测量数据的物理适配器提供输入。对于新的物理设置,只需重新训练轻量级的物理适配器。作者的架构还实现了对反问题的灵活迭代逐步求解,其中每个步骤都可以进行语义控制。针对三个电磁反演问题证明了该方法的可行性和优势:数值计算中的一个典型二维逆散射问题,以及三维和四维压缩微波元成像实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c8/11558082/ac34c5ded0fc/ADVS-11-2406793-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验