Suppr超能文献

基于深度学习的高光谱成像技术定量测量组织中的血红蛋白、黑色素和散射光。

Hyperspectral imaging with deep learning for quantification of tissue hemoglobin, melanin, and scattering.

机构信息

Rutgers, The State University of New Jersey, Department of Biomedical Engineering, Piscataway, New Jersey, United States.

Colgate-Palmolive Company, Global Technology and Design Center, Piscataway, New Jersey, United States.

出版信息

J Biomed Opt. 2024 Sep;29(9):093507. doi: 10.1117/1.JBO.29.9.093507. Epub 2024 Sep 6.

Abstract

SIGNIFICANCE

Hyperspectral cameras capture spectral information at each pixel in an image. Acquired spectra can be analyzed to estimate quantities of absorbing and scattering components, but the use of traditional fitting algorithms over megapixel images can be computationally intensive. Deep learning algorithms can be trained to rapidly analyze spectral data and can potentially process hyperspectral camera data in real time.

AIM

A hyperspectral camera was used to capture wide-field reflectance images of human tissue at 205 wavelength bands from 420 to 830 nm.

APPROACH

The optical properties of oxyhemoglobin, deoxyhemoglobin, melanin, and scattering were used with multi-layer Monte Carlo models to generate simulated diffuse reflectance spectra for 24,000 random combinations of physiologically relevant tissue components. These spectra were then used to train an artificial neural network (ANN) to predict tissue component concentrations from an input reflectance spectrum.

RESULTS

The ANN achieved low root mean square errors in a test set of 6000 independent simulated diffuse reflectance spectra while calculating concentration values more than 4000× faster than a conventional iterative least squares approach.

CONCLUSIONS

finger occlusion and gingival abrasion studies demonstrate the ability of this approach to rapidly generate high-resolution images of tissue component concentrations from a hyperspectral dataset acquired from human subjects.

摘要

意义

高光谱相机在图像的每个像素处捕获光谱信息。可以分析获得的光谱以估计吸收和散射成分的数量,但在百万像素图像上使用传统拟合算法可能计算量很大。深度学习算法可以经过训练来快速分析光谱数据,并有可能实时处理高光谱相机数据。

目的

使用高光谱相机在 420 到 830nm 的 205 个波长波段捕获人组织的宽场反射率图像。

方法

使用多层蒙特卡罗模型将氧合血红蛋白、脱氧血红蛋白、黑色素和散射的光学特性与生成的模拟漫反射光谱相结合,用于 24000 种随机组合的生理相关组织成分。然后,使用这些光谱来训练人工神经网络 (ANN),以便根据输入反射光谱预测组织成分浓度。

结果

ANN 在 6000 个独立模拟漫反射光谱的测试集中实现了低均方根误差,同时计算浓度值的速度比传统迭代最小二乘方法快 4000 倍以上。

结论

手指闭塞和牙龈磨损研究证明了该方法能够从人体受试者获得的高光谱数据集中快速生成组织成分浓度的高分辨率图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a615/11378079/d5b35986cd3d/JBO-029-093507-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验