Department of Pathology, University of Illinois Chicago, Chicago, IL, USA.
Department of Chemistry, University of Illinois Chicago, Chicago, IL, USA.
Chemosphere. 2024 Sep;364:143301. doi: 10.1016/j.chemosphere.2024.143301. Epub 2024 Sep 7.
Exposures to complex environmental chemical mixtures during pregnancy reach and target the feto-placental unit. This study investigates the influence of environmental chemical mixtures on placental bioenergetics. Recognizing the essential role of the epidermal growth factor receptor (EGFR) in placental development and its role in stimulating glycolysis and mitochondrial respiration in trophoblast cells, we explored the effects of chemicals known to disrupt EGFR signaling on cellular energy production. Human primary cytotrophoblasts (hCTBs) and a first-trimester extravillous trophoblast cell line (HTR-8/SVneo) were exposed to a mixture of EGFR-interfering chemicals, including atrazine, bisphenol S, niclosamide, PCB-126, PCB-153, and trans-nonachlor. An RNA sequencing approach revealed that the mixture altered the transcriptional signature of genes involved in cellular energetics. Next, the impact of the mixture on cellular bioenergetics was evaluated using a combination of mitochondrial and glycolytic stress tests, ATP production, glucose consumption, lactate synthesis, and super-resolution imaging. The chemical mixture did not alter basal oxygen consumption but diminished the maximum respiratory capacity in a dose-dependent manner, indicating a disruption of mitochondrial function. The respiratory capacity and ATP production were increased by EGF, while the Chem-Mix reduced both EGF- and non-EGF-mediated oxygen consumption rate in hCTBs. A similar pattern was observed in the glycolytic medium acidification, with EGF increasing the acidification, and the Chem-Mix blocking EGF-induced glycolytic acidification. Furthermore, direct stochastic optical reconstruction microscopy (dSTORM) imaging demonstrated that the Chem-Mix led to a reduction of the mitochondrial network architecture, with findings supported by a decrease in the abundance of OPA1, a mitochondrial membrane GTPase involved in mitochondrial fusion. In conclusion, we demonstrated that a mixture of EGFR-disrupting chemicals alters mitochondrial remodeling, resulting in disturbed cellular bioenergetics, reducing the capacity of human cytotrophoblast cells to generate energy. Future studies should investigate the mechanism by which mitochondrial dynamics are disrupted and the pathological significance of these findings.
怀孕期间暴露于复杂的环境化学混合物中会到达并靶向胎儿胎盘单位。本研究调查了环境化学混合物对胎盘生物能量学的影响。鉴于表皮生长因子受体 (EGFR) 在胎盘发育中的重要作用及其在刺激滋养细胞中的糖酵解和线粒体呼吸中的作用,我们探索了已知破坏 EGFR 信号的化学物质对细胞能量产生的影响。我们将人原代绒毛细胞 (hCTB) 和第一 trimester 绒毛外滋养层细胞系 (HTR-8/SVneo) 暴露于包括莠去津、双酚 S、尼氯沙明、PCB-126、PCB-153 和反式-十氯酮在内的 EGFR 干扰化学物质混合物中。RNA 测序方法表明,该混合物改变了参与细胞能量的基因的转录特征。接下来,使用线粒体和糖酵解应激测试、ATP 产生、葡萄糖消耗、乳酸合成和超分辨率成像的组合评估混合物对细胞生物能量的影响。该化学混合物不会改变基础耗氧量,但以剂量依赖的方式降低最大呼吸能力,表明线粒体功能受损。EGF 增加呼吸能力和 ATP 产生,而 Chem-Mix 降低 hCTB 中 EGF 和非 EGF 介导的耗氧量。在糖酵解介质酸化中观察到类似的模式,EGF 增加酸化,而 Chem-Mix 阻断 EGF 诱导的糖酵解酸化。此外,直接随机光学重建显微镜 (dSTORM) 成像表明,Chem-Mix 导致线粒体网络结构减少,OPA1 的丰度降低支持了这一发现,OPA1 是一种参与线粒体融合的线粒体膜 GTPase。总之,我们证明了 EGFR 破坏化学物质的混合物改变了线粒体重塑,导致细胞生物能量学紊乱,降低了人绒毛细胞产生能量的能力。未来的研究应探讨破坏线粒体动力学的机制以及这些发现的病理意义。