Barker Timothy Hugh, McBride Grace McKenzie, Ross-White Amanda, Pollock Danielle, Stern Cindy, Hasanoff Sabira, Kanukula Raju, Dias Mafalda, Scott Anna, Aromataris Edoardo, Whitehorn Ashley, Stone Jennifer C, Shamseer Larissa, Palmieri Patrick, Klugar Miloslav, Munn Zachary
Health Evidence Synthesis, Recommendations and Impact (HESRI), School of Public Health, The University of Adelaide, Adelaide, SA, Australia.
Queen's University Library, Queen's Collaboration for Health Care Quality (QcHcQ), Kingston, ON, Canada.
JBI Evid Synth. 2025 Mar 1;23(3):536-545. doi: 10.11124/JBIES-24-00167. Epub 2024 Sep 10.
This scoping review aims to identify, catalogue, and characterize previously reported tools, techniques, methods, and processes that have been recommended or used by evidence synthesizers to detect fraudulent or erroneous data and mitigate its impact.
Decision-making for policy and practice should always be underpinned by the best available evidence-typically peer-reviewed scientific literature. Evidence synthesis literature should be collated and organized using the appropriate evidence synthesis methodology, best exemplified by the role systematic reviews play in evidence-based health care. However, with the rise of "predatory journals," fraudulent or erroneous data may be invading this literature, which may negatively affect evidence syntheses that use this data. This, in turn, may compromise decision-making processes.
This review will include peer-reviewed articles, commentaries, books, and editorials that describe at least 1 tool, technique, method, or process with the explicit purpose of identifying or mitigating the impact of fraudulent or erroneous data for any evidence synthesis, in any topic area. Manuals, handbooks, and guidance from major organizations, universities, and libraries will also be considered.
This review will be conducted using the JBI methodology for scoping reviews and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). Databases and relevant organizational websites will be searched for eligible studies. Title and abstract, and, subsequently, full-text screening will be conducted in duplicate. Data from identified full texts will be extracted using a pre-determined checklist, while the findings will be summarized descriptively and presented in tables.
Open Science Framework https://osf.io/u8yrn.
本范围综述旨在识别、编目和描述先前报告的工具、技术、方法和流程,这些工具、技术、方法和流程已被证据综合者推荐或用于检测欺诈性或错误数据,并减轻其影响。
政策和实践的决策应以可获得的最佳证据为基础,通常是经过同行评审的科学文献。证据综合文献应使用适当的证据综合方法进行整理和组织,系统评价在循证医疗中的作用就是最好的例证。然而,随着“掠夺性期刊”的兴起,欺诈性或错误数据可能正在侵入这一文献领域,这可能会对使用这些数据的证据综合产生负面影响。反过来,这可能会损害决策过程。
本综述将包括同行评审的文章、评论、书籍和社论,这些文献描述了至少一种工具、技术、方法或流程,其明确目的是识别或减轻任何主题领域中欺诈性或错误数据对任何证据综合的影响。主要组织、大学和图书馆的手册、指南也将被纳入考虑。
本综述将使用JBI范围综述方法进行,并根据系统评价和Meta分析扩展的范围综述首选报告项目(PRISMA-ScR)进行报告。将在数据库和相关组织网站上搜索符合条件的研究。将对标题和摘要进行两轮重复筛选,随后进行全文筛选。将使用预先确定的清单从已识别的全文中提取数据,同时对研究结果进行描述性总结并以表格形式呈现。
开放科学框架https://osf.io/u8yrn 。