Suppr超能文献

基于元测试时间自适应的人群计数。

Crowd Counting Using Meta-Test-Time Adaptation.

机构信息

School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, P. R. China.

NICE Group, School of Computer Science and Electronic Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK.

出版信息

Int J Neural Syst. 2024 Nov;34(11):2450061. doi: 10.1142/S0129065724500618.

Abstract

Machine learning algorithms are commonly used for quickly and efficiently counting people from a crowd. Test-time adaptation methods for crowd counting adjust model parameters and employ additional data augmentation to better adapt the model to the specific conditions encountered during testing. The majority of current studies concentrate on unsupervised domain adaptation. These approaches commonly perform hundreds of epochs of training iterations, requiring a sizable number of unannotated data of every new target domain apart from annotated data of the source domain. Unlike these methods, we propose a meta-test-time adaptive crowd counting approach called CrowdTTA, which integrates the concept of test-time adaptation into the meta-learning framework and makes it easier for the counting model to adapt to the unknown test distributions. To facilitate the reliable supervision signal at the pixel level, we introduce uncertainty by inserting the dropout layer into the counting model. The uncertainty is then used to generate valuable pseudo labels, serving as effective supervisory signals for adapting the model. In the context of meta-learning, one image can be regarded as one task for crowd counting. In each iteration, our approach is a dual-level optimization process. In the inner update, we employ a self-supervised consistency loss function to optimize the model so as to simulate the parameters update process that occurs during the test phase. In the outer update, we authentically update the parameters based on the image with ground truth, improving the model's performance and making the pseudo labels more accurate in the next iteration. At test time, the input image is used for adapting the model before testing the image. In comparison to various supervised learning and domain adaptation methods, our results via extensive experiments on diverse datasets showcase the general adaptive capability of our approach across datasets with varying crowd densities and scales.

摘要

机器学习算法常用于快速高效地统计人群中的人数。人群计数的测试时自适应方法调整模型参数并采用额外的数据增强,以更好地适应测试时遇到的特定条件。目前的大多数研究都集中在无监督领域自适应上。这些方法通常需要数百个训练迭代周期,除了源域的注释数据外,还需要每个新目标域的大量未注释数据。与这些方法不同,我们提出了一种称为 CrowdTTA 的元测试时自适应人群计数方法,它将测试时自适应的概念集成到元学习框架中,使计数模型更容易适应未知的测试分布。为了在像素级别提供可靠的监督信号,我们通过在计数模型中插入 dropout 层来引入不确定性。然后,不确定性被用来生成有价值的伪标签,作为适应模型的有效监督信号。在元学习的背景下,一张图像可以被视为一个人群计数任务。在每次迭代中,我们的方法是一个双重级别的优化过程。在内层更新中,我们采用自监督一致性损失函数来优化模型,以模拟测试阶段发生的参数更新过程。在外层更新中,我们基于具有真实标签的图像真实地更新参数,从而提高模型的性能,并在下一次迭代中使伪标签更加准确。在测试时,输入图像用于在测试图像之前适应模型。通过在各种数据集上进行广泛的实验,与各种监督学习和领域自适应方法相比,我们的结果展示了我们的方法在不同人群密度和尺度的数据集上的通用自适应能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验