Morth Eric, Sidak Kevin, Maliga Zoltan, Moller Torsten, Gehlenborg Nils, Sorger Peter, Pfister Hanspeter, Beyer Johanna, Kruger Robert
IEEE Trans Vis Comput Graph. 2025 Jan;31(1):569-579. doi: 10.1109/TVCG.2024.3456406. Epub 2024 Dec 3.
We present Cell2Cell, a novel visual analytics approach for quantifying and visualizing networks of cell-cell interactions in three-dimensional (3D) multi-channel cancerous tissue data. By analyzing cellular interactions, biomedical experts can gain a more accurate understanding of the intricate relationships between cancer and immune cells. Recent methods have focused on inferring interaction based on the proximity of cells in low-resolution 2D multi-channel imaging data. By contrast, we analyze cell interactions by quantifying the presence and levels of specific proteins within a tissue sample (protein expressions) extracted from high-resolution 3D multi-channel volume data. Such analyses have a strong exploratory nature and require a tight integration of domain experts in the analysis loop to leverage their deep knowledge. We propose two complementary semi-automated approaches to cope with the increasing size and complexity of the data interactively: On the one hand, we interpret cell-to-cell interactions as edges in a cell graph and analyze the image signal (protein expressions) along those edges, using spatial as well as abstract visualizations. Complementary, we propose a cell-centered approach, enabling scientists to visually analyze polarized distributions of proteins in three dimensions, which also captures neighboring cells with biochemical and cell biological consequences. We evaluate our application in three case studies, where biologists and medical experts use Cell2Cell to investigate tumor micro-environments to identify and quantify T-cell activation in human tissue data. We confirmed that our tool can fully solve the use cases and enables a streamlined and detailed analysis of cell-cell interactions.
我们展示了Cell2Cell,这是一种新颖的视觉分析方法,用于在三维(3D)多通道癌组织数据中量化和可视化细胞间相互作用网络。通过分析细胞间相互作用,生物医学专家可以更准确地了解癌症与免疫细胞之间的复杂关系。最近的方法主要集中在基于低分辨率二维多通道成像数据中细胞的接近程度来推断相互作用。相比之下,我们通过量化从高分辨率三维多通道体数据中提取的组织样本内特定蛋白质的存在和水平(蛋白质表达)来分析细胞间相互作用。此类分析具有很强的探索性,需要在分析过程中紧密整合领域专家,以利用他们的深厚知识。我们提出了两种互补的半自动方法,以交互式地应对数据规模和复杂性的不断增加:一方面,我们将细胞间相互作用解释为细胞图中的边,并使用空间可视化以及抽象可视化来分析沿这些边的图像信号(蛋白质表达)。作为补充,我们提出了一种以细胞为中心的方法,使科学家能够在三维空间中直观地分析蛋白质的极化分布,该方法还能捕捉具有生化和细胞生物学影响的相邻细胞。我们在三个案例研究中评估了我们的应用,生物学家和医学专家使用Cell2Cell来研究肿瘤微环境,以识别和量化人体组织数据中的T细胞激活。我们证实,我们的工具能够完全解决这些用例,并实现对细胞间相互作用的简化和详细分析。