Suppr超能文献

不确定性的重构:引入人工智能预测急诊科死亡率。

Reconfiguration of uncertainty: Introducing AI for prediction of mortality at the emergency department.

机构信息

School of Health and Welfare, Halmstad University, Box 823, SE-301 18, Halmstad, Sweden.

出版信息

Soc Sci Med. 2024 Oct;359:117298. doi: 10.1016/j.socscimed.2024.117298. Epub 2024 Sep 6.

Abstract

The promise behind many advanced digital technologies in healthcare is to provide novel and accurate information, aiding medical experts to navigate and, ultimately, decrease uncertainty in their clinical work. However, sociological studies have started to show that these technologies are not producing straightforward objective knowledge, but instead often become associated with new uncertainties arising in unanticipated places and situations. This study contributes to the body of work by presenting a qualitative study of an Artificial Intelligence (AI) algorithm designed to predict the risk of mortality in patients discharged to home from the emergency department (ED). Through in-depth interviews with physicians working at the ED of a Swedish hospital, we demonstrate that while the AI algorithm can reduce targeted uncertainty, it simultaneously introduces three new forms of uncertainty into clinical practice: epistemic uncertainty, actionable uncertainty and ethical uncertainty. These new uncertainties require deliberate management and control, marking a shift from the physicians' accustomed comfort with uncertainty in mortality prediction. Our study advances the understanding of the recursive nature and temporal dynamics of uncertainty in medical work, showing how new uncertainties emerge from attempts to manage existing ones. It also reveals that physicians' attitudes towards, and management of, uncertainty vary depending on its form and underscores the intertwined role of digital technology in this process. By examining AI in emergency care, we provide valuable insights into how this epistemic technology reconfigures clinical uncertainty, offering significant theoretical and practical implications for the integration of AI in healthcare.

摘要

许多先进的数字医疗技术背后的承诺是提供新颖和准确的信息,帮助医学专家在临床工作中进行导航,并最终减少不确定性。然而,社会学研究已经开始表明,这些技术并没有产生简单明了的客观知识,而是经常与在预料之外的地方和情况下产生的新不确定性联系在一起。本研究通过对旨在预测从急诊科出院到家中的患者死亡风险的人工智能 (AI) 算法进行定性研究,为该领域的研究做出了贡献。通过对瑞典一家医院急诊科的医生进行深入访谈,我们表明,虽然 AI 算法可以减少目标不确定性,但它同时将三种新形式的不确定性引入临床实践:认识不确定性、可操作性不确定性和伦理不确定性。这些新的不确定性需要谨慎管理和控制,标志着医生对死亡率预测不确定性的习惯舒适感发生了转变。我们的研究增进了对医学工作中不确定性的递归性质和时间动态的理解,展示了如何通过尝试管理现有不确定性来产生新的不确定性。它还表明,医生对不确定性的态度和管理因不确定性的形式而异,并强调了数字技术在这一过程中的交织作用。通过研究急诊护理中的人工智能,我们深入了解了这种认知技术如何重新配置临床不确定性,为人工智能在医疗保健中的整合提供了重要的理论和实际意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验