Suppr超能文献

基于双极复模糊哈米均值算子的决策支持系统。

Decision support system based on bipolar complex fuzzy Hamy mean operators.

作者信息

Zhao Zhuoan, Hussain Abrar, Zhang Nan, Ullah Kifayat, Yin Shi, Awsar Amrullah, El-Bahy Salah M

机构信息

School of Economics and Management, Harbin Engineering University, Harbin, 150000, China.

Department of Mathematics, Riphah International University (Lahore Campus), 54000, Lahore, Pakistan.

出版信息

Heliyon. 2024 Aug 21;10(17):e36461. doi: 10.1016/j.heliyon.2024.e36461. eCollection 2024 Sep 15.

Abstract

The important feature of the multi-attribute decision-making (MADM) technique is to identify an ideal solution and aggregate collective cognitive fuzzy information of human opinion. To serve this purpose, we explore the concepts of the bipolar complex fuzzy set with positive and negative support terms. A few applications of the Hamy mean (HM) and Dual Hamy mean (DHM) models are also discussed to find out the relationship among input arguments or different preferences. For this, we derive a family of mathematical approaches by incorporating the theory of bipolar complex fuzzy information such as bipolar complex fuzzy Hamy mean (BCFHM), bipolar complex fuzzy weighted Hamy mean (BCFWHM), bipolar complex fuzzy Dual Hamy mean (BCFDHM), and bipolar complex fuzzy weighted Dual Hamy mean (BCFWDHM) operators. Derived mathematical approaches are more applicable and can express the influence of uncertain information due to the involvement of additional parameter values. Based on diagnosed research work and mathematical methodologies, we establish a decision algorithm for the MADM problem to resolve real-life dilemmas. An experimental case study demonstrates the compatibility of derived approaches and evaluates the investment policy's sustainability based on certain parameters. The advantages and consistency of the proposed research work are verified in the comparative study with various existing aggregation operators.

摘要

多属性决策(MADM)技术的重要特征是识别理想解并汇总人类意见的集体认知模糊信息。为实现这一目的,我们探索了具有正支持项和负支持项的双极复模糊集的概念。还讨论了哈米均值(HM)和对偶哈米均值(DHM)模型的一些应用,以找出输入参数或不同偏好之间的关系。为此,我们通过结合双极复模糊信息理论,推导了一系列数学方法,如双极复模糊哈米均值(BCFHM)、双极复模糊加权哈米均值(BCFWHM)、双极复模糊对偶哈米均值(BCFDHM)和双极复模糊加权对偶哈米均值(BCFWDHM)算子。由于涉及额外的参数值,推导的数学方法更适用,能够表达不确定信息的影响。基于诊断研究工作和数学方法,我们建立了一个用于解决MADM问题的决策算法,以解决现实生活中的困境。一个实验案例研究展示了所推导方法的兼容性,并基于某些参数评估了投资政策的可持续性。在与各种现有聚合算子的比较研究中,验证了所提出研究工作的优势和一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c16/11388734/2c32f8be76d2/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验