Suppr超能文献

通过机器学习进行有说服力的设计优化的电子健康干预措施的参与度分析。

Engagement analysis of a persuasive-design-optimized eHealth intervention through machine learning.

机构信息

Institute of Databases and Information Systems, 89081, Ulm, Germany.

Department of Clinical Psychology and Psychotherapy, 89081, Ulm, Germany.

出版信息

Sci Rep. 2024 Sep 13;14(1):21427. doi: 10.1038/s41598-024-72162-z.

Abstract

The challenge of sustaining user engagement in eHealth interventions is a pressing issue with significant implications for the effectiveness of these digital health tools. This study investigates user engagement in a cognitive-behavioral therapy-based eHealth intervention for procrastination, using a dataset from a randomized controlled trial of 233 university students. Various machine learning models, including Decision Tree, Gradient Boosting, Logistic Regression, Random Forest, and Support Vector Machines, were employed to predict patterns of user engagement. The study adopted a two-phase analytical approach. In the first phase, all features of the dataset were included, revealing 'total_minutes'-the total time participants spent on the intervention and the eHealth platform-as the most significant predictor of engagement. This finding emphasizes the intuitive notion that early time spent on the platform and the intervention is a strong indicator of later user engagement. However, to gain a deeper understanding of engagement beyond this predominant metric, the second phase of the analysis excluded 'total_minutes'. This approach allowed for the exploration of the roles and interdependencies of other engagement indicators, such as 'number_intervention_answersheets'-the number of completed lessons, 'logins_first_4_weeks'-login frequency, and 'number_diary_answersheets'-the number of completed diaries. The results from this phase highlighted the multifaceted nature of engagement, showing that while 'total_minutes' is strongly correlated with engagement, indicating that more engaged participants tend to spend more time on the intervention, the comprehensive engagement profile also depends on additional aspects like lesson completions and frequency of platform interactions.

摘要

维持电子健康干预措施用户参与度的挑战是一个紧迫的问题,对这些数字健康工具的有效性具有重大影响。本研究使用来自针对 233 名大学生的随机对照试验的数据集,调查了基于认知行为疗法的电子健康干预措施对拖延症的用户参与度。研究采用了机器学习模型,包括决策树、梯度提升、逻辑回归、随机森林和支持向量机,以预测用户参与模式。研究采用了两阶段分析方法。在第一阶段,包括了数据集的所有特征,发现“total_minutes”-参与者在干预和电子健康平台上花费的总时间-是参与度的最显著预测因素。这一发现强调了一个直观的概念,即早期在平台和干预上花费的时间是后期用户参与度的一个强有力的指标。然而,为了深入了解除主要指标之外的参与度,分析的第二阶段排除了“total_minutes”。这种方法允许探索其他参与指标的作用和相互依存关系,例如“number_intervention_answersheets”-完成的课程数量、“logins_first_4_weeks”-登录频率和“number_diary_answersheets”-完成的日记数量。这一阶段的结果突出了参与度的多面性,表明虽然“total_minutes”与参与度呈强相关,表明更参与的参与者往往会花费更多的时间在干预上,但全面的参与度概况也取决于课程完成和平台交互频率等其他方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76f5/11399129/86fa2388fd74/41598_2024_72162_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验