Ma Ming, Jin Ce, Yao Shufang, Li Nan, Zhou Huchen, Dai Zhao
School of Life Sciences, Tiangong University, Tianjin 300387, China.
State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin 300387, China.
Polymers (Basel). 2024 Aug 27;16(17):2423. doi: 10.3390/polym16172423.
Temperature and pressure sensors currently encounter challenges such as slow response times, large sizes, and insufficient sensitivity. To address these issues, we developed tetraphenylethylene (TPE)-doped polyvinylidene fluoride (PVDF) nanofiber membranes using electrospinning, with process parameters optimized through a convolutional neural network (CNN). We systematically analyzed the effects of PVDF concentration, spinning voltage, tip-to-collector distance, and flow rate on fiber morphology and diameter. The CNN model achieved high predictive accuracy, resulting in uniform and smooth nanofibers under optimal conditions. Incorporating TPE enhanced the hydrophobicity and mechanical properties of the nanofibers. Additionally, the fluorescent properties of the TPE-doped nanofibers remained stable under UV exposure and exhibited significant linear responses to temperature and pressure variations. The nanofibers demonstrated a temperature sensitivity of -0.976 gray value/°C and pressure sensitivity with an increase in fluorescence intensity from 537 a.u. to 649 a.u. under 600 g pressure. These findings highlight the potential of TPE-doped PVDF nanofiber membranes for advanced temperature and pressure sensing applications.
温度和压力传感器目前面临响应时间慢、尺寸大以及灵敏度不足等挑战。为解决这些问题,我们采用静电纺丝技术制备了掺杂四苯乙烯(TPE)的聚偏氟乙烯(PVDF)纳米纤维膜,并通过卷积神经网络(CNN)对工艺参数进行了优化。我们系统地分析了PVDF浓度、纺丝电压、喷头到收集器的距离以及流速对纤维形态和直径的影响。CNN模型具有较高的预测精度,在最佳条件下可制备出均匀光滑的纳米纤维。掺入TPE提高了纳米纤维的疏水性和机械性能。此外,掺杂TPE的纳米纤维在紫外线照射下荧光性能保持稳定,并且对温度和压力变化表现出显著的线性响应。这些纳米纤维在600 g压力下表现出-0.976灰度值/°C的温度灵敏度以及荧光强度从537 a.u.增加到649 a.u.的压力灵敏度。这些发现凸显了掺杂TPE的PVDF纳米纤维膜在先进温度和压力传感应用中的潜力。