Faculty of Science and Technology, Beijing Open University, Beijing 100081, China.
Department of Biomedical Engineering, College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
Sensors (Basel). 2024 Aug 26;24(17):5513. doi: 10.3390/s24175513.
The early detection of liver fibrosis is of significant importance. Deep learning analysis of ultrasound backscattered radiofrequency (RF) signals is emerging for tissue characterization as the RF signals carry abundant information related to tissue microstructures. However, the existing methods only used the time-domain information of the RF signals for liver fibrosis assessment, and the liver region of interest (ROI) is outlined manually. In this study, we proposed an approach for liver fibrosis assessment using deep learning models on ultrasound RF signals. The proposed method consisted of two-dimensional (2D) convolutional neural networks (CNNs) for automatic liver ROI segmentation from reconstructed B-mode ultrasound images and one-dimensional (1D) CNNs for liver fibrosis stage classification based on the frequency spectra (amplitude, phase, and power) of the segmented ROI signals. The Fourier transform was used to obtain the three kinds of frequency spectra. Two classical 2D CNNs were employed for liver ROI segmentation: U-Net and Attention U-Net. ROI spectrum signals were normalized and augmented using a sliding window technique. Ultrasound RF signals collected (with a 3-MHz transducer) from 613 participants (Group A) were included for liver ROI segmentation and those from 237 participants (Group B) for liver fibrosis stage classification, with a liver biopsy as the reference standard (Fibrosis stage: F0 = 27, F1 = 49, F2 = 51, F3 = 49, F4 = 61). In the test set of Group A, U-Net and Attention U-Net yielded Dice similarity coefficients of 95.05% and 94.68%, respectively. In the test set of Group B, the 1D CNN performed the best when using ROI phase spectrum signals to evaluate liver fibrosis stages ≥F1 (area under the receive operating characteristic curve, AUC: 0.957; accuracy: 89.19%; sensitivity: 85.17%; specificity: 93.75%), ≥F2 (AUC: 0.808; accuracy: 83.34%; sensitivity: 87.50%; specificity: 78.57%), and ≥F4 (AUC: 0.876; accuracy: 85.71%; sensitivity: 77.78%; specificity: 94.12%), and when using the power spectrum signals to evaluate ≥F3 (AUC: 0.729; accuracy: 77.14%; sensitivity: 77.27%; specificity: 76.92%). The experimental results demonstrated the feasibility of both the 2D and 1D CNNs in liver parenchyma detection and liver fibrosis characterization. The proposed methods have provided a new strategy for liver fibrosis assessment based on ultrasound RF signals, especially for early fibrosis detection. The findings of this study shed light on deep learning analysis of ultrasound RF signals in the frequency domain with automatic ROI segmentation.
肝纤维化的早期检测具有重要意义。深度学习分析超声反向散射射频 (RF) 信号在组织特征化方面正在兴起,因为 RF 信号携带与组织微观结构相关的丰富信息。然而,现有的方法仅使用 RF 信号的时域信息进行肝纤维化评估,并且手动勾勒出感兴趣的肝区域 (ROI)。在这项研究中,我们提出了一种使用超声 RF 信号上的深度学习模型进行肝纤维化评估的方法。该方法由二维 (2D) 卷积神经网络 (CNN) 组成,用于从重建的 B 模式超声图像中自动分割肝 ROI,以及一维 (1D) CNN 用于基于分割 ROI 信号的频率谱 (幅度、相位和功率) 进行肝纤维化阶段分类。傅立叶变换用于获得三种频谱。使用了两种经典的 2D CNN 进行肝 ROI 分割:U-Net 和 Attention U-Net。使用滑动窗口技术对 ROI 频谱信号进行归一化和扩充。从 613 名参与者 (A 组) 采集的超声 RF 信号 (使用 3 MHz 换能器) 用于肝 ROI 分割,从 237 名参与者 (B 组) 采集的信号用于肝纤维化阶段分类,以肝活检作为参考标准 (纤维化阶段:F0 = 27,F1 = 49,F2 = 51,F3 = 49,F4 = 61)。在 A 组的测试集中,U-Net 和 Attention U-Net 的 Dice 相似系数分别为 95.05%和 94.68%。在 B 组的测试集中,当使用 ROI 相位谱信号评估纤维化阶段≥F1(AUC:0.957;准确率:89.19%;敏感性:85.17%;特异性:93.75%)、≥F2(AUC:0.808;准确率:83.34%;敏感性:87.50%;特异性:78.57%)和≥F4(AUC:0.876;准确率:85.71%;敏感性:77.78%;特异性:94.12%)时,1D CNN 表现最佳,当使用功率谱信号评估≥F3(AUC:0.729;准确率:77.14%;敏感性:77.27%;特异性:76.92%)时,1D CNN 表现最佳。实验结果证明了 2D 和 1D CNN 在肝实质检测和肝纤维化特征化方面的可行性。所提出的方法为基于超声 RF 信号的肝纤维化评估提供了一种新策略,特别是用于早期纤维化检测。本研究的结果为基于自动 ROI 分割的超声 RF 信号在频域的深度学习分析提供了启示。