Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku Tokyo, 113-8657, Japan.
Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.
Plant J. 2024 Nov;120(3):872-880. doi: 10.1111/tpj.17027. Epub 2024 Sep 14.
Chloroplasts are organelles that are derived from a photosynthetic bacterium and have their own genome. Genome editing is a recently developing technology that allows for specific modifications of target sequences. The first successful application of genome editing in chloroplasts was reported in 2021, and since then, this research field has been expanding. Although the chloroplast genome of several dicot species can be stably modified by a conventional method, which involves inserting foreign DNAs into the chloroplast genome via homologous recombination, genome editing offers several advantages over this method. In this review, we introduce genome editing methods targeting the chloroplast genome and describe their advantages and limitations. So far, CRISPR/Cas systems are inapplicable for editing the chloroplast genome because guide RNAs, unlike proteins, cannot be efficiently delivered into chloroplasts. Therefore, protein-based enzymes are used to edit the chloroplast genome. These enzymes contain a chloroplast-transit peptide, the DNA-binding domain of transcription activator-like effector nuclease (TALEN), or a catalytic domain that induces DNA modifications. To date, genome editing methods can cause DNA double-strand break or introduce C:G-to-T:A and A:T-to-G:C base edits at or near the target sequence. These methods are expected to contribute to basic research on the chloroplast genome in many species and to be fundamental methods of plant breeding utilizing the chloroplast genome.
叶绿体是由光合细菌衍生而来的细胞器,具有自己的基因组。基因组编辑是一种新兴的技术,可以对目标序列进行特定的修饰。2021 年首次成功应用于叶绿体的基因组编辑,自此以来,该研究领域一直在不断扩展。尽管几种双子叶植物的叶绿体基因组可以通过常规方法(涉及通过同源重组将外源 DNA 插入叶绿体基因组)稳定修饰,但基因组编辑相对于该方法具有几个优势。在这篇综述中,我们介绍了针对叶绿体基因组的基因组编辑方法,并描述了它们的优点和局限性。到目前为止,CRISPR/Cas 系统不适用于编辑叶绿体基因组,因为与蛋白质不同,向导 RNA 不能有效地递送到叶绿体中。因此,使用基于蛋白质的酶来编辑叶绿体基因组。这些酶包含叶绿体转运肽、转录激活因子样效应物核酸酶(TALEN)的 DNA 结合域或诱导 DNA 修饰的催化结构域。迄今为止,基因组编辑方法可以在目标序列处或附近引起 DNA 双链断裂,或引入 C:G 到 T:A 和 A:T 到 G:C 的碱基编辑。这些方法有望为许多物种的叶绿体基因组的基础研究做出贡献,并成为利用叶绿体基因组进行植物育种的基本方法。