Tan Yao, Wang Xiqing, Liao Xiangqiong, Chen Qin, Li Hongmei, Liu Kang, Fu Junwei, Liu Min
Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha 410083, People's Republic of China.
Nano Lett. 2024 Oct 2;24(39):12163-12170. doi: 10.1021/acs.nanolett.4c03116. Epub 2024 Sep 18.
With high current density, the intense near-electrode CO reduction reaction (CORR) will cause the concentration gradients of bicarbonate (HCO) and hydroxyl (OH) ions, which affect the selectivity of high-value C products of the CORR. In this work, we simulated the near-electrode concentration gradients of electrolyte species with different porous Cu-based CLs (catalyst layers) of GDE (gas diffusion electrode) by COMSOL Multiphysics. The higher porosity CL exhibits a better buffer ability of local alkalinity while ensuring a sufficient supply of H and local CO concentration. Subsequently, the different porosity CLs were prepared by vacuum-thermal evaporation with different evaporation rate. Structural characterizations and liquid permeability tests confirm the role of the porous CL structure in optimizing concentration gradients. As a result, the high-porosity CL (Cu-HP) exhibits a higher C Faraday efficiency (FE) of ∼79.61% at 500 mA cm under 1 M KHCO, far more than the FE ≈ 38.20% with the low-porosity sample (Cu-LP).
在高电流密度下,强烈的近电极一氧化碳还原反应(CORR)会导致碳酸氢根(HCO)和氢氧根(OH)离子的浓度梯度,这会影响CORR中高价值碳产物的选择性。在这项工作中,我们通过COMSOL Multiphysics模拟了具有不同多孔铜基气体扩散电极(GDE)催化层(CLs)的电解质物种的近电极浓度梯度。较高孔隙率的CL在确保氢和局部一氧化碳浓度充足供应的同时,表现出更好的局部碱度缓冲能力。随后,通过不同蒸发速率的真空热蒸发制备了不同孔隙率的CLs。结构表征和液体渗透性测试证实了多孔CL结构在优化浓度梯度中的作用。结果,在1 M KHCO条件下,高孔隙率CL(Cu-HP)在500 mA cm下表现出约79.61%的较高碳法拉第效率(FE),远高于低孔隙率样品(Cu-LP)的FE≈38.20%。