Engelhardt Marc U, Zimmermann Markus O, Dammann Marcel, Stahlecker Jason, Poso Antti, Kronenberger Thales, Kunick Conrad, Stehle Thilo, Boeckler Frank M
Laboratory for Molecular Design & Pharmaceutical Biophysics, Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany.
Interfaculty Institute for Biomedical Informatics (IBMI), Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany.
J Chem Theory Comput. 2024 Dec 10;20(23):10716-10730. doi: 10.1021/acs.jctc.4c00834. Epub 2024 Sep 18.
Halogen bonding is a valuable interaction in drug design, offering an unconventional way to influence affinity and selectivity by leveraging the halogen atoms' ability to form directional bonds. The present study evaluates halogen-water interactions within protein binding sites, demonstrating that targeting a water molecule via halogen bonding can in specific cases contribute beneficially to ligand binding. In solving and examining the crystal structure of 2-cyclopentyl-7-iodo-1-indole-3-carbonitrile bound to DYRK1a kinase, we identified a notable iodine-water interaction, where water accepts a halogen bond with good geometric and energetic features. This starting point triggered further investigations into the prevalence of such interactions across various halogen-bearing ligands (chlorine, bromine, iodine) in the PDB. Using QM calculations (MP2/TZVPP), we highlight the versatility and potential benefits of such halogen-water interactions, particularly when the water molecule is a stable part of the binding site's structured environment. While the interaction energies with water are lower compared to other typical halogen bond acceptors, we deem this different binding strength essential for reducing desolvation costs. We suggest that "interstitial" water molecules, as stable parts of the binding site engaging in multiple strong interactions, could be prime targets for halogen bonding. Further systematic studies, combining high-resolution crystal structures and quantum chemistry, are required to scrutinize whether halogen bonding on water is more than a "drop in the ocean".
卤键是药物设计中一种有价值的相互作用,它提供了一种非传统的方式,通过利用卤素原子形成定向键的能力来影响亲和力和选择性。本研究评估了蛋白质结合位点内的卤-水相互作用,表明在特定情况下,通过卤键靶向水分子可对配体结合产生有益贡献。在解析和研究与DYRK1a激酶结合的2-环戊基-7-碘-1-吲哚-3-腈的晶体结构时,我们发现了一种显著的碘-水相互作用,其中水接受了具有良好几何和能量特征的卤键。这一发现促使我们进一步研究PDB中各种含卤配体(氯、溴、碘)中此类相互作用的普遍性。通过量子力学计算(MP2/TZVPP),我们强调了此类卤-水相互作用的多功能性和潜在益处,特别是当水分子是结合位点结构化环境的稳定组成部分时。虽然与水的相互作用能比其他典型的卤键受体低,但我们认为这种不同的结合强度对于降低去溶剂化成本至关重要。我们认为,作为结合位点稳定组成部分且参与多种强相互作用的“间隙”水分子可能是卤键的主要靶点。需要结合高分辨率晶体结构和量子化学进行进一步的系统研究,以审视水与卤键的相互作用是否只是“沧海一粟”。