Suppr超能文献

利用进化算法优化用于精神分裂症谱系障碍预测的图神经网络结构。

Optimizing graph neural network architectures for schizophrenia spectrum disorder prediction using evolutionary algorithms.

机构信息

School of Information Science and Technology, University of Science and Technology of China, Hefei, 230027, China; School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, China; Graduate School of Medicine, Juntendo University, Tokyo, 1138421, Japan.

School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, 230009, China; Industrial Automation Engineering Technology Research Center of Anhui Province, Hefei, 230009, China.

出版信息

Comput Methods Programs Biomed. 2024 Dec;257:108419. doi: 10.1016/j.cmpb.2024.108419. Epub 2024 Sep 11.

Abstract

BACKGROUND AND OBJECTIVE

The accurate diagnosis of schizophrenia spectrum disorder plays an important role in improving patient outcomes, enabling timely interventions, and optimizing treatment plans. Functional connectivity analysis, utilizing functional magnetic resonance imaging data, has been demonstrated to offer invaluable biomarkers conducive to clinical diagnosis. However, previous studies mainly focus on traditional machine learning methods or hand-crafted neural networks, which may not fully capture the spatial topological relationship between brain regions.

METHODS

This paper proposes an evolutionary algorithm (EA) based graph neural architecture search (GNAS) method. EA-GNAS has the ability to search for high-performance graph neural networks for schizophrenia spectrum disorder prediction. Moreover, we adopt GNNExplainer to investigate the explainability of the acquired architectures, ensuring that the model's predictions are both accurate and comprehensible.

RESULTS

The results suggest that the graph neural network model, derived using genetic algorithm search, outperforms under five-fold cross-validation, achieving a fitness of 0.1850. Relative to conventional machine learning and other deep learning approaches, the proposed method yields superior accuracy, F1 score, and AUC values of 0.8246, 0.8438, and 0.8258, respectively.

CONCLUSION

Based on a multi-site dataset from schizophrenia spectrum disorder patients, the findings reveal an enhancement over prior methods, advancing our comprehension of brain function and potentially offering a biomarker for diagnosing schizophrenia spectrum disorder.

摘要

背景与目的

准确诊断精神分裂症谱系障碍对于改善患者预后、及时干预和优化治疗方案至关重要。利用功能磁共振成像数据进行功能连接分析,可以提供有价值的生物标志物,有助于临床诊断。然而,之前的研究主要集中在传统机器学习方法或手工制作的神经网络上,这些方法可能无法充分捕捉脑区之间的空间拓扑关系。

方法

本文提出了一种基于进化算法(EA)的图神经网络架构搜索(GNAS)方法。EA-GNAS 能够搜索用于精神分裂症谱系障碍预测的高性能图神经网络。此外,我们采用 GNNExplainer 来研究所获得架构的可解释性,以确保模型的预测既准确又易于理解。

结果

结果表明,基于遗传算法搜索的图神经网络模型在五重交叉验证下表现优于其他模型,拟合度为 0.1850。与传统机器学习和其他深度学习方法相比,该方法的准确率、F1 分数和 AUC 值分别提高到了 0.8246、0.8438 和 0.8258。

结论

基于来自精神分裂症谱系障碍患者的多站点数据集,该研究结果表明该方法优于之前的方法,增进了我们对大脑功能的理解,并可能为精神分裂症谱系障碍的诊断提供生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验