Suppr超能文献

HiMAL:用于预测阿尔茨海默病进展的多模态分层多任务辅助学习框架。

HiMAL: Multimodal Hierarchical Multi-task Auxiliary Learning framework for predicting Alzheimer's disease progression.

作者信息

Kumar Sayantan, Yu Sean C, Michelson Andrew, Kannampallil Thomas, Payne Philip R O

机构信息

Department of Computer Science and Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.

Institute for Informatics, Data Science and Biostatistics, Washington University School of Medicine, St. Louis, MO 63110, United States.

出版信息

JAMIA Open. 2024 Sep 17;7(3):ooae087. doi: 10.1093/jamiaopen/ooae087. eCollection 2024 Oct.

Abstract

OBJECTIVE

We aimed to develop and validate a novel multimodal framework erarchical ulti-task uxiliary earning ( framework, for predicting cognitive composite functions as auxiliary tasks that estimate the longitudinal risk of transition from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD).

MATERIALS AND METHODS

HiMAL utilized multimodal longitudinal visit data including imaging features, cognitive assessment scores, and clinical variables from MCI patients in the Alzheimer's Disease Neuroimaging Initiative dataset, to predict at each visit if an MCI patient will progress to AD within the next 6 months. Performance of HiMAL was compared with state-of-the-art single-task and multitask baselines using area under the receiver operator curve (AUROC) and precision recall curve (AUPRC) metrics. An ablation study was performed to assess the impact of each input modality on model performance. Additionally, longitudinal explanations regarding risk of disease progression were provided to interpret the predicted cognitive decline.

RESULTS

Out of 634 MCI patients (mean [IQR] age: 72.8 [67-78], 60% male), 209 (32%) progressed to AD. HiMAL showed better prediction performance compared to all state-of-the-art longitudinal single-modality singe-task baselines (AUROC = 0.923 [0.915-0.937]; AUPRC = 0.623 [0.605-0.644]; all  .05). Ablation analysis highlighted that imaging and cognition scores with maximum contribution towards prediction of disease progression.

DISCUSSION

Clinically informative model explanations anticipate cognitive decline 6 months in advance, aiding clinicians in future disease progression assessment. HiMAL relies on routinely collected electronic health records (EHR) variables for proximal (6 months) prediction of AD onset, indicating its translational potential for point-of-care monitoring and managing of high-risk patients.

摘要

目的

我们旨在开发并验证一种新型多模态框架——分层多任务辅助学习(HiMAL)框架,用于将认知综合功能预测为辅助任务,以估计从轻度认知障碍(MCI)转变为阿尔茨海默病(AD)的纵向风险。

材料与方法

HiMAL利用多模态纵向访视数据,包括阿尔茨海默病神经影像倡议数据集中MCI患者的影像特征、认知评估分数和临床变量,来预测每次访视时MCI患者在未来6个月内是否会进展为AD。使用受试者操作特征曲线下面积(AUROC)和精确召回率曲线(AUPRC)指标,将HiMAL的性能与最先进的单任务和多任务基线进行比较。进行了一项消融研究,以评估每种输入模态对模型性能的影响。此外,还提供了关于疾病进展风险的纵向解释,以解释预测的认知衰退。

结果

在634例MCI患者(平均[四分位间距]年龄:72.8[67 - 78],60%为男性)中,209例(32%)进展为AD。与所有最先进的纵向单模态单任务基线相比,HiMAL表现出更好的预测性能(AUROC = 0.923[0.915 - 0.937];AUPRC = 0.623[0.605 - 0.644];所有P < 0.05)。消融分析突出显示,影像和认知分数对疾病进展预测的贡献最大。

讨论

具有临床信息的模型解释可提前6个月预测认知衰退,有助于临床医生进行未来疾病进展评估。HiMAL依靠常规收集的电子健康记录(EHR)变量对AD发病进行近期(6个月)预测,表明其在即时护理监测和管理高危患者方面的转化潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffd5/11408727/dc545bf96d2a/ooae087f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验