College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
J Environ Sci (China). 2025 Apr;150:503-514. doi: 10.1016/j.jes.2023.11.025. Epub 2023 Dec 1.
Catalytic oxidation of NO at room temperature was carried out over nitrogen (N)-doped sludge char (SC) prepared from pyrolysis of municipal sewage sludge, and urea was adopted as nitrogen source. The effects of different N-doping methods (one-step and two-step method), dried sludge (DS)/urea mass ratios (5:1, 4:1, 3:1, 2:1, and 1:1), SC preparation procedures (pyrolysis only, pyrolysis with acid washing, and pyrolysis with KOH activation and acid washing), and different pyrolysis temperatures (500, 600, 700, and 800°C) on the catalytic oxidation of NO were compared to optimize the procedure for SC preparation. The results indicated that N-doping could obviously promote the catalytic performance of SC. The one-step method with simultaneous sludge pyrolysis (at 700°C), KOH activation, and N-doping (DS/urea of 3:1) was the optimal procedure for preparing the N-doped SC with the NO conversion rate of 54.7%, whereas the optimal NO conversion rate of SC without N-doping was only 47.3%. Urea worked both as carbon and nitrogen source, which could increase about 2.9%-16.5% of carbon and 24.8%-42.7% of nitrogen content in SC pyrolyzed at 700°C. N-doping significantly promoted microporosity of SC. The optimal N-doped SC showed specific surface areas of 571.38 m/g, much higher than 374.34 m/g of the optimal SC without N-doping. In addition, N-doping also increased amorphousness and surface basicity of SC through the formation of N-containing groups. Finally, three reaction paths, i.e. microporous reactor, active sites, and basic site control path, were proposed to explain the mechanism of N-doping on promoting the catalytic performance of NO.
在室温下,通过在氮气(N)掺杂污泥炭(SC)上进行催化氧化,完成了对 NO 的催化氧化,该 SC 由城市污水污泥热解制成,且尿素被用作氮源。采用不同的 N 掺杂方法(一步法和两步法)、干燥污泥(DS)/尿素质量比(5:1、4:1、3:1、2:1 和 1:1)、SC 制备程序(仅热解、热解与酸洗、热解与 KOH 活化和酸洗)和不同的热解温度(500、600、700 和 800°C),对 NO 的催化氧化效果进行了比较,以优化 SC 制备程序。结果表明,N 掺杂可以明显提高 SC 的催化性能。通过同步进行污泥热解(700°C)、KOH 活化和 N 掺杂(DS/尿素比为 3:1)的一步法,制备出的 N 掺杂 SC 的 NO 转化率最高,为 54.7%,而未进行 N 掺杂的 SC 的最佳 NO 转化率仅为 47.3%。尿素既作为碳源又作为氮源,可以使在 700°C 热解的 SC 中的碳含量增加约 2.9%-16.5%,氮含量增加 24.8%-42.7%。N 掺杂显著提高了 SC 的微孔率。最佳 N 掺杂 SC 的比表面积高达 571.38 m/g,远高于未进行 N 掺杂的最佳 SC 的比表面积 374.34 m/g。此外,N 掺杂还通过形成含 N 基团来提高 SC 的非晶度和表面碱性。最后,提出了三种反应途径,即微孔反应器、活性位和碱性位控制途径,来解释 N 掺杂对促进 NO 催化性能的作用机制。