Suppr超能文献

基于XGBoost机器学习的老年阿司匹林使用者内出血预测模型

Predictive Model of Internal Bleeding in Elderly Aspirin Users Using XGBoost Machine Learning.

作者信息

Chen Tenggao, Lei Wanlin, Wang Maofeng

机构信息

Department of Colorectal Surgery, Affiliated Dongyang Hospital, Wenzhou Medical University, Dongyang, Zhejiang, 322100, People's Republic of China.

Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital, Wenzhou Medical University, Dongyang, Zhejiang, 322100, People's Republic of China.

出版信息

Risk Manag Healthc Policy. 2024 Sep 18;17:2255-2269. doi: 10.2147/RMHP.S478826. eCollection 2024.

Abstract

OBJECTIVE

This study aimed to develop a predictive model for assessing internal bleeding risk in elderly aspirin users using machine learning.

METHODS

A total of 26,030 elderly aspirin users (aged over 65) were retrospective included in the study. Data on patient demographics, clinical features, underlying diseases, medical history, and laboratory examinations were collected from Affiliated Dongyang Hospital of Wenzhou Medical University. Patients were randomly divided into two groups, with a 7:3 ratio, for model development and internal validation, respectively. Least absolute shrinkage and selection operator (LASSO) regression, extreme gradient boosting (XGBoost), and multivariate logistic regression were employed to develop prediction models. Model performance was evaluated using area under the curve (AUC), calibration curves, decision curve analysis (DCA), clinical impact curve (CIC), and net reduction curve (NRC).

RESULTS

The XGBoost model exhibited the highest AUC among all models. It consisted of six clinical variables: HGB, PLT, previous bleeding, gastric ulcer, cerebral infarction, and tumor. A visual nomogram was developed based on these six variables. In the training dataset, the model achieved an AUC of 0.842 (95% CI: 0.829-0.855), while in the test dataset, it achieved an AUC of 0.820 (95% CI: 0.800-0.840), demonstrating good discriminatory performance. The calibration curve analysis revealed that the nomogram model closely approximated the ideal curve. Additionally, the DCA curve, CIC, and NRC demonstrated favorable clinical net benefit for the nomogram model.

CONCLUSION

This study successfully developed a predictive model to estimate the risk of bleeding in elderly aspirin users. This model can serve as a potential useful tool for clinicians to estimate the risk of bleeding in elderly aspirin users and make informed decisions regarding their treatment and management.

摘要

目的

本研究旨在利用机器学习开发一种预测模型,以评估老年阿司匹林使用者的内出血风险。

方法

本研究回顾性纳入了26030名老年阿司匹林使用者(年龄超过65岁)。从温州医科大学附属东阳医院收集了患者的人口统计学数据、临床特征、基础疾病、病史和实验室检查数据。患者被随机分为两组,比例为7:3,分别用于模型开发和内部验证。采用最小绝对收缩和选择算子(LASSO)回归、极端梯度提升(XGBoost)和多变量逻辑回归来开发预测模型。使用曲线下面积(AUC)、校准曲线、决策曲线分析(DCA)、临床影响曲线(CIC)和净减少曲线(NRC)评估模型性能。

结果

XGBoost模型在所有模型中表现出最高的AUC。它由六个临床变量组成:血红蛋白(HGB)、血小板(PLT)、既往出血史、胃溃疡、脑梗死和肿瘤。基于这六个变量绘制了直观的列线图。在训练数据集中,该模型的AUC为0.842(95%CI:0.829 - 0.855),而在测试数据集中,其AUC为0.820(95%CI:0.800 - 0.840),显示出良好的区分性能。校准曲线分析表明列线图模型与理想曲线非常接近。此外,DCA曲线、CIC和NRC显示列线图模型具有良好的临床净效益。

结论

本研究成功开发了一种预测模型,用于估计老年阿司匹林使用者的出血风险。该模型可作为临床医生估计老年阿司匹林使用者出血风险并就其治疗和管理做出明智决策的潜在有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9179/11416773/030924e1cb6f/RMHP-17-2255-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验