Suppr超能文献

10例连续宫颈癌患者中ChatGPT与多学科团队会议治疗建议的比较

A Comparison of ChatGPT and Multidisciplinary Team Meeting Treatment Recommendations in 10 Consecutive Cervical Cancer Patients.

作者信息

Ebner Florian, Hartkopf Andreas, Veselinovic Kristina, Schochter Fabienne, Janni Wolfgang, Lukac Stefan, Dayan Davut

机构信息

Department of Obstetrics and Gynecology, Alb-Donau Klinikum (ADK), Ehingen, DEU.

Department of Obstetrics and Gynecology, University of Tübingen, Tübingen, DEU.

出版信息

Cureus. 2024 Aug 22;16(8):e67458. doi: 10.7759/cureus.67458. eCollection 2024 Aug.

Abstract

Background The preparation of multidisciplinary team (MDT) meetings can be time-consuming. In addition to the clinical data being available digitally in subsystems, the preparation of more complex cases requires literature research. Several expert systems have been developed to support this process. However, the interaction with these systems has to be trained. Current development enables linguistic interaction with such artificial intelligence (AI) systems. To the best of our knowledge, these have not been tested as premedical screening tools for MDT. Methods This is a retrospective consecutive case series of 10 cervical cancer cases comparing the medical recommendations of the MDT and artificial intelligence (AI) on a low level (i.e., surgery, systemic treatment, and radiotherapy). Results The clinical cases ranged from primary diagnosis via suspected recurrence to palliative settings. The AI repeatedly stated that medical professionals need to be consulted before treatment decisions. The AI answers ranged from no agreement to overachievement by mentioning treatment options for preexisting risk factors (such as obesity). In standard cases, the AI answer matched well with the expert recommendations. In some cases, the AI answers were contrary to our treatment recommendation. Conclusion The interaction with current language AIs is temptingly easy, and the replies are very understandable. Despite the AI warning regarding medical recommendations in the majority of our cases, there was a good match with the MDT recommendations. However, in some cases, the medical evidence behind the answers was missing or in the worst case fictional. In our case series, the AI did not meet the requirements to support a clinical MDT meeting by prescreening the therapeutic options. However, it did exceed the expectations regarding the risk factors of the patients.

摘要

背景 多学科团队(MDT)会议的准备工作可能很耗时。除了临床数据可在子系统中以数字形式获取外,对于更复杂的病例,还需要进行文献研究。已经开发了几个专家系统来支持这一过程。然而,与这些系统的交互需要培训。当前的发展使得能够与这类人工智能(AI)系统进行语言交互。据我们所知,这些系统尚未作为MDT的术前筛查工具进行测试。方法 这是一个回顾性连续病例系列,包含10例宫颈癌病例,比较了MDT和人工智能(AI)在低级别(即手术、全身治疗和放疗)上的医疗建议。结果 临床病例范围从原发性诊断到疑似复发再到姑息治疗。AI多次表示在做出治疗决策前需要咨询医学专业人员。AI的回答从不同意到通过提及既往风险因素(如肥胖)的治疗方案而过度达成一致。在标准病例中,AI的回答与专家建议匹配良好。在某些情况下,AI的回答与我们的治疗建议相反。结论 与当前语言AI的交互非常容易,回答也很容易理解。尽管在我们大多数病例中AI对医疗建议提出了警告,但它与MDT的建议仍有很好的匹配度。然而,在某些情况下,回答背后的医学证据缺失,最坏的情况是虚构的。在我们的病例系列中,AI未能通过预先筛选治疗方案来满足支持临床MDT会议的要求。不过,它在患者风险因素方面确实超出了预期。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d33/11415775/649cbf9ff783/cureus-0016-00000067458-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验