Vogel Robert, Mück Björn
Klinikum Kempten - Klinikverbund Allgäu, Kempten, Germany.
J Abdom Wall Surg. 2024 Sep 6;3:13059. doi: 10.3389/jaws.2024.13059. eCollection 2024.
This mini-review explores the integration of Artificial Intelligence (AI) within hernia surgery, highlighting the role of Machine Learning (ML) and Deep Learning (DL). The term AI incorporates various technologies including ML, Neural Networks (NN), and DL. Classical ML algorithms depend on structured, labeled data for predictions, requiring significant human oversight. In contrast, DL, a subset of ML, generally leverages unlabeled, raw data such as images and videos to autonomously identify patterns and make intricate deductions. This process is enabled by neural networks used in DL, where hidden layers between the input and output capture complex data patterns. These layers' configuration and weighting are pivotal in developing effective models for various applications, such as image and speech recognition, natural language processing, and more specifically, surgical procedures and outcomes in hernia surgery. Significant advancements have been achieved with DL models in surgical settings, particularly in predicting the complexity of abdominal wall reconstruction (AWR) and other postoperative outcomes, which are elaborated in detail within the context of this mini-review. The review method involved analyzing relevant literature from databases such as PubMed and Google Scholar, focusing on studies related to preoperative planning, intraoperative techniques, and postoperative management within hernia surgery. Only recent, peer-reviewed publications in English that directly relate to the topic were included, highlighting the latest advancements in the field to depict potential benefits and current limitations of AI technologies in hernia surgery, advocating for further research and application in this evolving field.
本综述探讨了人工智能(AI)在疝气手术中的整合情况,重点介绍了机器学习(ML)和深度学习(DL)的作用。人工智能这一术语涵盖了包括机器学习、神经网络(NN)和深度学习在内的各种技术。传统的机器学习算法依靠结构化的、有标签的数据进行预测,需要大量人工监督。相比之下,深度学习作为机器学习的一个子集,通常利用图像和视频等无标签的原始数据来自动识别模式并进行复杂的推理。这一过程由深度学习中使用的神经网络实现,输入层和输出层之间的隐藏层捕捉复杂的数据模式。这些层的配置和权重对于开发适用于各种应用的有效模型至关重要,如图像和语音识别、自然语言处理,更具体地说,还有疝气手术的手术过程和结果。深度学习模型在手术环境中取得了重大进展,特别是在预测腹壁重建(AWR)的复杂性和其他术后结果方面,本综述将详细阐述这些进展。综述方法包括分析来自PubMed和谷歌学术等数据库的相关文献,重点关注与疝气手术中的术前规划、术中技术和术后管理相关的研究。仅纳入了近期直接与该主题相关的、经过同行评审的英文出版物,突出该领域的最新进展,以描述人工智能技术在疝气手术中的潜在益处和当前局限性,倡导在这个不断发展的领域进行进一步研究和应用。