Suppr超能文献

基于精英男性举重运动员身体表现指标对抓举和挺举成绩的预测

Prediction of Snatch and Clean and Jerk Performance From Physical Performance Measures in Elite Male Weightlifters.

作者信息

Sandau Ingo, Kipp Kristof

机构信息

Department Strength, Power and Technical Sports, Institute for Applied Training Science, Leipzig, Germany ; and.

Department of Physical Therapy-Program in Exercise Science, Marquette University, Milwaukee.

出版信息

J Strength Cond Res. 2025 Jan 1;39(1):33-40. doi: 10.1519/JSC.0000000000004945. Epub 2024 Sep 24.

Abstract

Sandau, I and Kipp, K. Prediction of snatch and clean and jerk performance from physical performance measures in elite male weightlifters. J Strength Cond Res 39(1): 33-40, 2025-This study aimed to build a valid model to predict maximal weightlifting competition performance using ordinary least squares linear regression (OLR) and penalized (Ridge) linear regression (penLR) in 29 elite male weightlifters. One repetition maximum (1RM) or 3RM test results of assistant exercises were used as predictors. Maximal performance data of competition and assistant exercises were collected during a macrocycle in preparation for a competition. One repetition maximum snatch pull, 3RM back squat, 1RM overhead press, and body mass were used to predict the 1RM snatch; and 1RM clean pull, 3RM front squat, 1RM overhead press, and body mass were used to predict the 1RM clean and jerk. Model validation was performed using cross-validation (CV) and external validation (EV; random unknown dataset) for the coefficient of determination and root mean square error (RMSE). Results revealed that penLR models present more plausible output in the relative importance of highly correlated predictors. Of note, the 1RM snatch pull is the most relevant predictor for the 1RM snatch, whereas the 1RM clean pull and 3RM front squat are the most relevant predictors for the 1RM clean and jerk. Validation-based absolute predictive error (RMSE) ranged between ≈ 3-9 kg for the 1RM snatch and ≈ 3-7 kg for the 1RM clean and jerk, depending on the model (OLR vs. penLR) and validation procedure (CV vs. EV). In conclusion, penLR models should be used over OLR models to analyze highly correlated predictors because of more plausible model coefficients and smaller predictive errors.

摘要

桑道,I和基普,K。从精英男性举重运动员的身体表现指标预测抓举和挺举成绩。《力量与体能研究杂志》39(1): 33 - 40,2025年——本研究旨在建立一个有效的模型,使用普通最小二乘线性回归(OLR)和惩罚(岭)线性回归(penLR)来预测29名精英男性举重运动员的最大举重比赛成绩。辅助练习的一次重复最大值(1RM)或3RM测试结果用作预测指标。在为比赛做准备的一个大周期内收集比赛和辅助练习的最大成绩数据。用一次重复最大值抓举拉起、3RM后深蹲、1RM卧推和体重来预测1RM抓举;用1RM挺举拉起、3RM前深蹲、1RM卧推和体重来预测1RM挺举。使用交叉验证(CV)和外部验证(EV;随机未知数据集)对决定系数和均方根误差(RMSE)进行模型验证。结果显示,penLR模型在高度相关预测指标的相对重要性方面呈现出更合理的输出。值得注意的是,1RM抓举拉起是1RM抓举最相关的预测指标,而1RM挺举拉起和3RM前深蹲是1RM挺举最相关的预测指标。基于验证的绝对预测误差(RMSE),1RM抓举约为3 - 9千克,1RM挺举约为3 - 7千克,具体取决于模型(OLR与penLR)和验证程序(CV与EV)。总之,由于模型系数更合理且预测误差更小,在分析高度相关的预测指标时应使用penLR模型而非OLR模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验