Suppr超能文献

用于增强绘画MA-XRF数据集光谱分析的深度学习

Deep learning for enhanced spectral analysis of MA-XRF datasets of paintings.

作者信息

Preisler Zdenek, Andolina Rosario, Busacca Andrea, Caliri Claudia, Miliani Costanza, Romano Francesco P

机构信息

CNR, Istituto di Scienze del Patrimonio Culturale, Via Biblioteca 4, 95124 Catania, Italy.

INFN, Laboratori Nazionali del Sud, Via Santa Sofia 62, 95123 Catania, Italy.

出版信息

Sci Adv. 2024 Sep 27;10(39):eadp6234. doi: 10.1126/sciadv.adp6234. Epub 2024 Sep 25.

Abstract

Recent advancements of noninvasive imaging techniques applied for the study and conservation of paintings have driven a rapid development of cutting-edge computational methods. Macro x-ray fluorescence (MA-XRF), a well-established tool in this domain, generates complex and voluminous datasets that pose analytical challenges. To address this, we have incorporated machine learning strategies specifically designed for the analysis as they allow for identification of nontrivial dependencies and classification within these high-dimensional data, thereby promising comprehensive interrogation. We introduce a deep learning algorithm trained on a synthetic dataset that allows for fast and accurate analysis of the XRF spectra in MA-XRF datasets. This approach successfully overcomes the limitations commonly associated with traditional deconvolution methods. Applying this methodology to a painting by Raphael, we demonstrate that our model not only achieves superior accuracy in quantifying the fluorescence line intensities but also effectively eliminates the artifacts typically observed in elemental maps generated through conventional analysis methods.

摘要

用于绘画研究与保护的非侵入性成像技术的最新进展推动了前沿计算方法的快速发展。宏观X射线荧光(MA-XRF)是该领域中一种成熟的工具,它会生成复杂且大量的数据集,这带来了分析挑战。为解决此问题,我们纳入了专门为分析而设计的机器学习策略,因为它们能够识别这些高维数据中的重要依赖关系并进行分类,从而有望实现全面的探究。我们引入了一种在合成数据集上训练的深度学习算法,该算法能够对MA-XRF数据集中的XRF光谱进行快速准确的分析。这种方法成功克服了传统反卷积方法通常存在的局限性。将此方法应用于拉斐尔的一幅画作,我们证明我们的模型不仅在量化荧光线强度方面具有卓越的准确性,而且还能有效消除通过传统分析方法生成的元素图中通常观察到的伪影。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d307/11423876/1140238e06ec/sciadv.adp6234-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验