Suppr超能文献

基于双参数磁共振的特征及超声造影的组学特征预测高危前列腺癌

Prediction of high-risk prostate cancer based on the habitat features of biparametric magnetic resonance and the omics features of contrast-enhanced ultrasound.

作者信息

Huang Fangyi, Huang Qun, Liao Xinhong, Gao Yong

机构信息

Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Rd, Nanning, 530021, Guangxi, China.

出版信息

Heliyon. 2024 Sep 16;10(18):e37955. doi: 10.1016/j.heliyon.2024.e37955. eCollection 2024 Sep 30.

Abstract

RATIONALE AND OBJECTIVES

To predict high-risk prostate cancer (PCa) by combining the habitat features of biparametric magnetic resonance imaging (bp-MRI) with the omics features of contrast-enhanced ultrasound (CEUS).

MATERIALS AND METHODS

This study retrospectively collected patients with PCa confirmed by histopathology from January 2020 to June 2023. All patients underwent bp-MRI and CEUS of the prostate, followed by a targeted and transrectal systematic prostate biopsy. The cases were divided into the intermediate-low-risk group (Gleason score ≤7, n = 59) and high-risk group (Gleason score ≥8, n = 33). Radiomics prediction models, namely, MRI_habitat, CEUS_intra, and MRI-CEUS models, were developed based on the habitat features of bp-MRI, the omics features of CEUS, and a merge of features of the two, respectively. Predicted probabilities, called radscores, were then obtained. Clinical-radiological indicators were screened to construct clinic models, which generated clinic scores. The omics-clinic model was constructed by combining the radscore of MRI-CEUS and the clinic score. The predictive performance of all the models was evaluated using the receiver operating characteristic curve.

RESULTS

The area under the curve (AUC) values of the MRI-CEUS model were 0.875 and 0.842 in the training set and test set, respectively, which were higher than those of the MR_habitat (training set: 0.846, test set: 0.813), CEUS_intra (training set: 0.801, test set: 0.743), and clinic models (training set: 0.722, test set: 0.611). The omics-clinic model achieved a higher AUC (train set: 0.986, test set: 0.898).

CONCLUSIONS

The combination of the habitat features of bp-MRI and the omics features of CEUS can help predict high-risk PCa.

摘要

原理与目的

通过结合双参数磁共振成像(bp-MRI)的特征与对比增强超声(CEUS)的组学特征来预测高危前列腺癌(PCa)。

材料与方法

本研究回顾性收集了2020年1月至2023年6月经组织病理学确诊的PCa患者。所有患者均接受了前列腺的bp-MRI和CEUS检查,随后进行了靶向及经直肠系统性前列腺活检。病例分为中低危组(Gleason评分≤7,n = 59)和高危组(Gleason评分≥8,n = 33)。基于bp-MRI的特征、CEUS的组学特征以及两者特征的合并,分别开发了影像组学预测模型,即MRI_habitat、CEUS_intra和MRI-CEUS模型。然后获得预测概率,称为影像评分。筛选临床放射学指标以构建临床模型,生成临床评分。通过结合MRI-CEUS的影像评分和临床评分构建组学-临床模型。使用受试者操作特征曲线评估所有模型的预测性能。

结果

MRI-CEUS模型在训练集和测试集的曲线下面积(AUC)值分别为0.875和0.842,高于MR_habitat(训练集:0.846,测试集:0.813)、CEUS_intra(训练集:0.801,测试集:0.743)和临床模型(训练集:0.722,测试集:0.611)。组学-临床模型获得了更高的AUC(训练集:0.986,测试集:0.898)。

结论

bp-MRI的特征与CEUS的组学特征相结合有助于预测高危PCa。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8eff/11423289/72383b64d755/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验