Suppr超能文献

使用短时傅里叶变换和机器学习技术的视网膜电图分析

Electroretinogram Analysis Using a Short-Time Fourier Transform and Machine Learning Techniques.

作者信息

Albasu Faisal, Kulyabin Mikhail, Zhdanov Aleksei, Dolganov Anton, Ronkin Mikhail, Borisov Vasilii, Dorosinsky Leonid, Constable Paul A, Al-Masni Mohammed A, Maier Andreas

机构信息

Engineering School of Information Technologies, Telecommunications and Control Systems, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 620002 Yekaterinburg, Russia.

Department of Artificial Intelligence and Data Science, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea.

出版信息

Bioengineering (Basel). 2024 Aug 26;11(9):866. doi: 10.3390/bioengineering11090866.

Abstract

Electroretinography (ERG) is a non-invasive method of assessing retinal function by recording the retina's response to a brief flash of light. This study focused on optimizing the ERG waveform signal classification by utilizing Short-Time Fourier Transform (STFT) spectrogram preprocessing with a machine learning (ML) decision system. Several window functions of different sizes and window overlaps were compared to enhance feature extraction concerning specific ML algorithms. The obtained spectrograms were employed to train deep learning models alongside manual feature extraction for more classical ML models. Our findings demonstrated the superiority of utilizing the Visual Transformer architecture with a Hamming window function, showcasing its advantage in ERG signal classification. Also, as a result, we recommend the RF algorithm for scenarios necessitating manual feature extraction, particularly with the Boxcar (rectangular) or Bartlett window functions. By elucidating the optimal methodologies for feature extraction and classification, this study contributes to advancing the diagnostic capabilities of ERG analysis in clinical settings.

摘要

视网膜电图(ERG)是一种通过记录视网膜对短暂闪光的反应来评估视网膜功能的非侵入性方法。本研究聚焦于利用短时傅里叶变换(STFT)频谱图预处理和机器学习(ML)决策系统来优化ERG波形信号分类。比较了几种不同大小和窗口重叠的窗口函数,以增强与特定ML算法相关的特征提取。所获得的频谱图被用于训练深度学习模型,同时也用于为更经典的ML模型进行手动特征提取。我们的研究结果证明了使用具有汉明窗口函数的视觉Transformer架构的优越性,展示了其在ERG信号分类中的优势。此外,我们还推荐在需要手动特征提取的情况下,特别是使用矩形窗或巴特利特窗函数时,使用随机森林(RF)算法。通过阐明特征提取和分类的最佳方法,本研究有助于提高临床环境中ERG分析的诊断能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f30/11429325/85a9642775e9/bioengineering-11-00866-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验