Alamari Mohammed B, Almulhim Fatimah A, Kaid Zoulikha, Laksaci Ali
Department of Mathematics, College of Science, King Khalid University, Abha 62529, Saudi Arabia.
Department of Mathematical Sciences, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
Entropy (Basel). 2024 Sep 18;26(9):798. doi: 10.3390/e26090798.
This paper treats the problem of risk management through a new conditional expected shortfall function. The new risk metric is defined by the expectile as the shortfall threshold. A nonparametric estimator based on the Nadaraya-Watson approach is constructed. The asymptotic property of the constructed estimator is established using a functional time-series structure. We adopt some concentration inequalities to fit this complex structure and to precisely determine the convergence rate of the estimator. The easy implantation of the new risk metric is shown through real and simulated data. Specifically, we show the feasibility of the new model as a risk tool by examining its sensitivity to the fluctuation in financial time-series data. Finally, a comparative study between the new shortfall and the standard one is conducted using real data.
本文通过一个新的条件期望损失函数来处理风险管理问题。新的风险度量由分位数定义为损失阈值。构建了基于 Nadaraya-Watson 方法的非参数估计量。利用泛函时间序列结构建立了所构建估计量的渐近性质。我们采用一些集中不等式来拟合这种复杂结构,并精确确定估计量的收敛速度。通过实际数据和模拟数据展示了新风险度量的易于植入性。具体而言,我们通过检验其对金融时间序列数据波动的敏感性,展示了新模型作为一种风险工具的可行性。最后,使用实际数据对新的损失函数和标准损失函数进行了比较研究。