Suppr超能文献

提高基于贝叶斯网络的皮肤致敏强度评估定义方法的可及性。

Increasing Accessibility of Bayesian Network-Based Defined Approaches for Skin Sensitisation Potency Assessment.

作者信息

Mohoric Tomaz, Wilm Anke, Onken Stefan, Milovich Andrii, Logavoch Artem, Ankli Pascal, Tagorti Ghada, Kirchmair Johannes, Schepky Andreas, Kühnl Jochen, Najjar Abdulkarim, Hardy Barry, Ebmeyer Johanna

机构信息

Edelweiss Connect GmbH, Hochbergerstrasse 60C, 4057 Basel, Switzerland.

Beiersdorf AG, Beiersdorfstraße 1-9, 22529 Hamburg, Germany.

出版信息

Toxics. 2024 Sep 12;12(9):666. doi: 10.3390/toxics12090666.

Abstract

Skin sensitisation is a critical adverse effect assessed to ensure the safety of compounds and materials exposed to the skin. Alongside the development of new approach methodologies (NAMs), defined approaches (DAs) have been established to promote skin sensitisation potency assessment by adopting and integrating standardised in vitro, in chemico, and in silico methods with specified data analysis procedures to achieve reliable and reproducible predictions. The incorporation of additional NAMs could help increase accessibility and flexibility. Using superior algorithms may help improve the accuracy of hazard and potency assessment and build confidence in the results. Here, we introduce two new DA models, with the aim to build DAs on freely available software and the newly developed kDPRA for covalent binding of a chemical to skin peptides and proteins. The new DA models are built on an existing Bayesian network (BN) modelling approach and expand on it. The new DA models include kDPRA data as one of the in vitro parameters and utilise in silico inputs from open-source QSAR models. Both approaches perform at least on par with the existing BN DA and show 63% and 68% accuracy when predicting four LLNA potency classes, respectively. We demonstrate the value of the Bayesian network's confidence indications for predictions, as they provide a measure for differentiating between highly accurate and reliable predictions (accuracies up to 87%) in contrast to low-reliability predictions associated with inaccurate predictions.

摘要

皮肤致敏是一种关键的不良反应,用于评估接触皮肤的化合物和材料的安全性。随着新方法学(NAMs)的发展,已建立了明确方法(DAs),通过采用和整合标准化的体外、化学和计算机模拟方法以及特定的数据分析程序来促进皮肤致敏潜力评估,以实现可靠且可重复的预测。纳入更多的NAMs有助于提高可及性和灵活性。使用更优算法可能有助于提高危害和潜力评估的准确性,并增强对结果的信心。在此,我们介绍两种新的DA模型,旨在基于免费软件和新开发的用于化学物质与皮肤肽和蛋白质共价结合的kDPRA构建DAs。新的DA模型基于现有的贝叶斯网络(BN)建模方法构建并在此基础上进行扩展。新的DA模型将kDPRA数据作为体外参数之一,并利用来自开源QSAR模型的计算机模拟输入。两种方法的表现至少与现有的BN DA相当,在预测四个LLNA效力类别时,准确率分别为63%和68%。我们展示了贝叶斯网络预测置信度指示的价值,因为它们提供了一种区分高度准确和可靠预测(准确率高达87%)与不准确预测相关的低可靠性预测的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a229/11435505/d0913cb82b6e/toxics-12-00666-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验