Liang Xuena, Shang Junliang, Liu Jin-Xing, Zheng Chun-Hou, Wang Juan
IEEE/ACM Trans Comput Biol Bioinform. 2024 Nov-Dec;21(6):2406-2417. doi: 10.1109/TCBB.2024.3469164. Epub 2024 Dec 10.
Recent advancements in spatially transcriptomics (ST) technologies have enabled the comprehensive measurement of gene expression profiles while preserving the spatial information of cells. Combining gene expression profiles and spatial information has been the most commonly used method to identify spatial functional domains and genes. However, most existing spatial domain decipherer methods are more focused on spatially neighboring structures and fail to take into account balancing the self-characteristics and the spatial structure dependency of spots. Therefore, we propose a novel model called SpaGCAC, which recognizes spatial domains with the help of an adaptive feature-spatial balanced graph convolutional network named AFSBGCN. The AFSBGCN can dynamically learn the relationship between spatial local topology structures and the self-characteristics of spots by adaptively increasing or declining the weight on the self-characteristics during message aggregation. Moreover, to better capture the local structures of spots, SpaGCAC exploits a local topology structure contrastive learning strategy. Meanwhile, SpaGCAC utilizes a probability distribution contrastive learning strategy to increase the similarity of probability distributions for points belonging to the same category. We validate the performance of SpaGCAC for spatial domain identification on four spatial transcriptomic datasets. In comparison with seven spatial domain recognition methods, SpaGCAC achieved the highest NMI median of 0.683 and the second highest ARI median of 0.559 on the multi-slice DLPFC dataset. SpaGCAC achieved the best results on all three other single-slice datasets. The above-mentioned results show that SpaGCAC outperforms most existing methods, providing enhanced insights into tissue heterogeneity.
空间转录组学(ST)技术的最新进展使得在保留细胞空间信息的同时能够全面测量基因表达谱。结合基因表达谱和空间信息一直是识别空间功能域和基因最常用的方法。然而,大多数现有的空间域解析方法更侧重于空间相邻结构,而没有考虑平衡斑点的自身特征和空间结构依赖性。因此,我们提出了一种名为SpaGCAC的新型模型,它借助一个名为AFSBGCN的自适应特征-空间平衡图卷积网络来识别空间域。AFSBGCN可以通过在消息聚合过程中自适应地增加或减少自身特征的权重,动态地学习空间局部拓扑结构与斑点自身特征之间的关系。此外,为了更好地捕捉斑点的局部结构,SpaGCAC采用了局部拓扑结构对比学习策略。同时,SpaGCAC利用概率分布对比学习策略来提高属于同一类别的点的概率分布的相似性。我们在四个空间转录组数据集上验证了SpaGCAC在空间域识别方面的性能。与七种空间域识别方法相比,在多切片DLPFC数据集上,SpaGCAC的NMI中位数最高,为0.683,ARI中位数第二高,为0.559。SpaGCAC在其他三个单切片数据集上均取得了最佳结果。上述结果表明,SpaGCAC优于大多数现有方法,为组织异质性提供了更深入的见解。