Suppr超能文献

精准医学中用于改进治疗方法的可解释生物学:仅靠人工智能是不够的。

Explainable biology for improved therapies in precision medicine: AI is not enough.

作者信息

Jurisica I

机构信息

Division of Orthopaedics, Osteoarthritis Research Program, Schroeder Arthritis Institute, and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, M5T 0S8, Canada; Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, ON, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.

出版信息

Best Pract Res Clin Rheumatol. 2024 Dec;38(4):102006. doi: 10.1016/j.berh.2024.102006. Epub 2024 Sep 26.

Abstract

Technological advances and high-throughput bio-chemical assays are rapidly changing ways how we formulate and test biological hypotheses, and how we treat patients. Most complex diseases arise on a background of genetics, lifestyle and environment factors, and manifest themselves as a spectrum of symptoms. To fathom intricate biological processes and their changes from healthy to disease states, we need to systematically integrate and analyze multi-omics datasets, ontologies, and diverse annotations. Without proper management of such complex biological and clinical data, artificial intelligence (AI) algorithms alone cannot be effectively trained, validated, and successfully applied to provide trustworthy and patient-centric diagnosis, prognosis and treatment. Precision medicine requires to use multi-omics approaches effectively, and offers many opportunities for using AI, "big data" analytics, and integrative computational biology workflows. Advances in optical and biochemical assay technologies including sequencing, mass spectrometry and imaging modalities have transformed research by empowering us to simultaneously view all genes expressed, identify proteome-wide changes, and assess interacting partners of each individual protein within a dynamically changing biological system, at an individual cell level. While such views are already having an impact on our understanding of healthy and disease conditions, it remains challenging to extract useful information comprehensively and systematically from individual studies, ensure that signal is separated from noise, develop models, and provide hypotheses for further research. Data remain incomplete and are often poorly connected using fragmented biological networks. In addition, statistical and machine learning models are developed at a cohort level and often not validated at the individual patient level. Combining integrative computational biology and AI has the potential to improve understanding and treatment of diseases by identifying biomarkers and building explainable models characterizing individual patients. From systematic data analysis to more specific diagnostic, prognostic and predictive biomarkers, drug mechanism of action, and patient selection, such analyses influence multiple steps from prevention to disease characterization, and from prognosis to drug discovery. Data mining, machine learning, graph theory and advanced visualization may help identify diagnostic, prognostic and predictive biomarkers, and create causal models of disease. Intertwining computational prediction and modeling with biological experiments leads to faster, more biologically and clinically relevant discoveries. However, computational analysis results and models are going to be only as accurate and useful as correct and comprehensive are the networks, ontologies and datasets used to build them. High quality, curated data portals provide the necessary foundation for translational research. They help to identify better biomarkers, new drugs, precision treatments, and should lead to improved patient outcomes and their quality of life. Intertwining computational prediction and modeling with biological experiments, efficiently and effectively leads to more useful findings faster.

摘要

技术进步和高通量生化检测正在迅速改变我们构建和检验生物学假设以及治疗患者的方式。大多数复杂疾病是在遗传、生活方式和环境因素的背景下产生的,并表现为一系列症状。为了深入了解复杂的生物学过程及其从健康状态到疾病状态的变化,我们需要系统地整合和分析多组学数据集、本体和各种注释。如果没有对如此复杂的生物学和临床数据进行妥善管理,仅靠人工智能(AI)算法无法得到有效训练、验证和成功应用,从而无法提供可靠且以患者为中心的诊断、预后和治疗。精准医学需要有效运用多组学方法,并为使用AI、“大数据”分析和综合计算生物学工作流程提供了诸多机会。包括测序、质谱和成像技术在内的光学和生化检测技术的进步,使我们能够在单个细胞水平上同时查看所有表达的基因、识别全蛋白质组的变化,并评估动态变化的生物系统中每个蛋白质的相互作用伙伴,从而改变了研究方式。虽然这些视角已经对我们理解健康和疾病状况产生了影响,但要从个体研究中全面、系统地提取有用信息,确保信号与噪声分离,开发模型并为进一步研究提供假设,仍然具有挑战性。数据仍然不完整且常常通过碎片化的生物网络连接不佳。此外,统计和机器学习模型是在队列水平上开发的,并且通常未在个体患者水平上进行验证。将综合计算生物学与AI相结合,有潜力通过识别生物标志物并构建表征个体患者的可解释模型来改善对疾病的理解和治疗。从系统数据分析到更具体的诊断、预后和预测生物标志物、药物作用机制以及患者选择,此类分析影响着从预防到疾病表征以及从预后到药物发现的多个步骤。数据挖掘、机器学习、图论和高级可视化可能有助于识别诊断、预后和预测生物标志物,并创建疾病的因果模型。将计算预测和建模与生物学实验相结合,能够更快地得出更具生物学和临床相关性的发现。然而,计算分析结果和模型的准确性和实用性将仅取决于用于构建它们的网络、本体和数据集的正确性和全面性。高质量、经过整理的数据门户为转化研究提供了必要的基础。它们有助于识别更好的生物标志物、新药、精准治疗方法,并应能改善患者的治疗效果及其生活质量。将计算预测和建模与生物学实验有效结合,能够更快地高效得出更有用的发现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验