Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing 210009, China.
Department of Statistics and Actuarial Science, School of Mathematics, Southeast University, Nanjing 211189, China.
Int J Mol Sci. 2024 Sep 18;25(18):10020. doi: 10.3390/ijms251810020.
Diabetes mellitus (DM) presents a critical global health challenge, characterized by persistent hyperglycemia and associated with substantial economic and health-related burdens. This study employs advanced machine-learning techniques to improve the prediction and classification of antidiabetic peptides, with a particular focus on differentiating those effective against T1DM from those targeting T2DM. We integrate feature selection with analysis methods, including logistic regression, support vector machines (SVM), and adaptive boosting (AdaBoost), to classify antidiabetic peptides based on key features. Feature selection through the Lasso-penalized method identifies critical peptide characteristics that significantly influence antidiabetic activity, thereby establishing a robust foundation for future peptide design. A comprehensive evaluation of logistic regression, SVM, and AdaBoost shows that AdaBoost consistently outperforms the other methods, making it the most effective approach for classifying antidiabetic peptides. This research underscores the potential of machine learning in the systematic evaluation of bioactive peptides, contributing to the advancement of peptide-based therapies for diabetes management.
糖尿病(DM)是一个全球性的健康挑战,其特征是持续的高血糖,与巨大的经济和健康负担相关。本研究采用先进的机器学习技术来提高抗糖尿病肽的预测和分类能力,特别关注区分针对 T1DM 和 T2DM 的有效肽。我们将特征选择与逻辑回归、支持向量机(SVM)和自适应提升(AdaBoost)等分析方法相结合,根据关键特征对抗糖尿病肽进行分类。通过 Lasso 惩罚方法进行特征选择,确定了对抗糖尿病活性有重要影响的关键肽特征,从而为未来的肽设计奠定了坚实的基础。逻辑回归、SVM 和 AdaBoost 的综合评估表明,AdaBoost 始终优于其他方法,是分类抗糖尿病肽的最有效方法。这项研究强调了机器学习在生物活性肽系统评估中的潜力,为基于肽的糖尿病管理治疗方法的发展做出了贡献。