Nyenhuis Jonathan, Heuer Christopher, Bahnemann Janina
Institute of Physics, Chair of Technical Biology, University of Augsburg, Universitätsstr. 1, Augsburg, 86159, Germany.
Institute of Physics, Centre for Advanced Analytics and Predictive Sciences, University of Augsburg, Universitätsstr. 1, Augsburg, 86159, Germany.
Chem Asian J. 2024 Dec 16;19(24):e202400717. doi: 10.1002/asia.202400717. Epub 2024 Nov 7.
3D printing has matured into a versatile technique that offers researchers many different printing methods and materials with varying properties. Nowadays, 3D printing is deployed within a myriad of different applications, ranging from chemistry to biotechnology -including bioanalytics, biocatalysis or biosensing. Due to its inherent design flexibility (which enables rapid prototyping) and ease of use, 3D printing facilitates the relatively quick and easy creation of new devices with unprecedented functions.. This review article describes how 3D printing can be employed for research in the fields of biochemistry and biotechnology, and specifically for biocatalysis and biosensor applications. We survey different relevant 3D printing techniques, as well as the surface activation and functionalization of 3D-printed materials. Finally, we show how 3D printing is used for the fabrication of reaction ware and enzymatic assays in biocatalysis research, as well as for the generation of biosensors using aptamers, antibodies, and enzymes as recognition elements.
3D打印已经发展成为一种多功能技术,为研究人员提供了许多不同的打印方法和具有不同特性的材料。如今,3D打印被应用于无数不同的领域,从化学到生物技术——包括生物分析、生物催化或生物传感。由于其固有的设计灵活性(能够实现快速原型制作)和易用性,3D打印有助于相对快速且轻松地创建具有前所未有的功能的新设备。这篇综述文章描述了3D打印如何用于生物化学和生物技术领域的研究,特别是用于生物催化和生物传感器应用。我们调查了不同的相关3D打印技术,以及3D打印材料的表面活化和功能化。最后,我们展示了3D打印如何用于生物催化研究中的反应容器和酶促测定的制造,以及如何使用适体、抗体和酶作为识别元件来生成生物传感器。