Suppr超能文献

红细胞穿过脾脏可变形的内皮细胞裂孔:对脾脏滤过和血液动力学的深入了解。

Red blood cell passage through deformable interendothelial slits in the spleen: Insights into splenic filtration and hemodynamics.

机构信息

Division of Applied Mathematics, Brown University, Providence, RI, 02906, United States of America.

School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, 30602, United States of America.

出版信息

Comput Biol Med. 2024 Nov;182:109198. doi: 10.1016/j.compbiomed.2024.109198. Epub 2024 Sep 27.

Abstract

The spleen constantly clears altered red blood cells (RBCs) from the circulation, tuning the balance between RBC formation (erythropoiesis) and removal. The retention and elimination of RBCs occur predominantly in the open circulation of the spleen, where RBCs must cross submicron-wide inter-endothelial slits (IES). Several experimental and computational studies have illustrated the role of IES in filtrating the biomechanically and morphologically altered RBCs based on a rigid wall assumption. However, these studies also reported that when the size of IES is close to the lower end of clinically observed sizes (less than 0.5 μm), an unphysiologically large pressure difference across the IES is required to drive the passage of normal RBCs, sparking debates on the feasibility of the rigid wall assumption. In this work, We propose two deformable IES models, namely the passive model and the active model, aiming to explore the impact of the deformability of IES on the filtration function of the spleen. In the passive model, we implement the worm-like string model to depict the IES's deformation as it interacts with blood plasma and allows RBC to traverse. In contrast, the active model involved regulating the IES deformation based on the local pressure surrounding the slit. To demonstrate the validity of the deformable model, we simulate the filtration of RBCs with varied size and stiffness by IES under three scenarios: (1) a single RBC traversing a single slit; (2) a suspension of RBCs traversing an array of slits, mimicking in vitro spleen-on-a-chip experiments; (3) RBC suspension passing through the 3D spleen filtration unit known as'the splenon'. Our simulation results of RBC passing through a single slit show that the deformable IES model offers more accurate predictions of the critical cell surface area to volume ratio that dictate the removal of aged RBCs from circulation compared to prior rigid-wall models. Our biophysical models of the spleen-on-a-chip indicate a hierarchy of filtration function stringency: rigid model > passive model > active model, providing a possible explanation of the filtration function of IES. We also illustrate that the biophysical model of 'the splenon' enables us to replicate the ex vivo experiments involving spleen filtration of malaria-infected RBCs. Taken together, our simulation findings indicate that the deformable IES model could serve as a mesoscopic representation of spleen filtration function closer to physiological reality, addressing questions beyond the scope of current experimental and computational models and enhancing our understanding of the fundamental flow dynamics and mechanical clearance processes within in the human spleen.

摘要

脾脏不断清除循环中的衰老红细胞(RBC),从而调节 RBC 生成(红细胞生成)和清除之间的平衡。RBC 的保留和消除主要发生在脾脏的开放循环中,在那里 RBC 必须穿过亚微米宽的内皮间隙(IES)。几项实验和计算研究表明,IES 在根据刚性壁假设过滤生物力学和形态改变的 RBC 方面起着重要作用。然而,这些研究还报告说,当 IES 的尺寸接近临床观察到的较小尺寸(小于 0.5μm)的下限时,需要穿过 IES 的不生理的大压差来驱动正常 RBC 的通过,这引发了关于刚性壁假设可行性的争论。在这项工作中,我们提出了两种可变形的 IES 模型,即被动模型和主动模型,旨在探索 IES 的可变形性对脾脏过滤功能的影响。在被动模型中,我们实现了蠕虫状字符串模型来描述 IES 的变形,因为它与血浆相互作用并允许 RBC 穿过。相比之下,主动模型涉及根据狭缝周围的局部压力调节 IES 的变形。为了证明变形模型的有效性,我们在三种情况下模拟了不同尺寸和刚度的 RBC 通过 IES 的过滤:(1)单个 RBC 穿过单个狭缝;(2)RBC 悬浮液穿过狭缝阵列,模拟体外脾脏芯片实验;(3)RBC 悬浮液通过称为“脾单元”的 3D 脾脏过滤单元。我们对单个狭缝中 RBC 穿过的模拟结果表明,与先前的刚性壁模型相比,可变形 IES 模型能够更准确地预测决定衰老 RBC 从循环中清除的临界细胞表面积与体积比。我们的脾脏芯片的生物物理模型表明过滤功能的严格程度存在层次结构:刚性模型>被动模型>主动模型,为 IES 的过滤功能提供了一种可能的解释。我们还表明,“脾单元”的生物物理模型使我们能够复制涉及疟疾感染 RBC 脾脏过滤的离体实验。总之,我们的模拟结果表明,可变形 IES 模型可以作为更接近生理现实的脾脏过滤功能的介观表示,解决了当前实验和计算模型范围之外的问题,并增强了我们对人类脾脏内基本流动动力学和机械清除过程的理解。

相似文献

1
Red blood cell passage through deformable interendothelial slits in the spleen: Insights into splenic filtration and hemodynamics.
Comput Biol Med. 2024 Nov;182:109198. doi: 10.1016/j.compbiomed.2024.109198. Epub 2024 Sep 27.
2
A combined computational and experimental investigation of the filtration function of splenic macrophages in sickle cell disease.
PLoS Comput Biol. 2023 Dec 13;19(12):e1011223. doi: 10.1371/journal.pcbi.1011223. eCollection 2023 Dec.
3
Biomechanics of red blood cells in human spleen and consequences for physiology and disease.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7804-9. doi: 10.1073/pnas.1606751113. Epub 2016 Jun 27.
5
The sensing of poorly deformable red blood cells by the human spleen can be mimicked in vitro.
Blood. 2011 Feb 24;117(8):e88-95. doi: 10.1182/blood-2010-10-312801. Epub 2010 Dec 16.
6
How the spleen reshapes and retains young and old red blood cells: A computational investigation.
PLoS Comput Biol. 2021 Nov 1;17(11):e1009516. doi: 10.1371/journal.pcbi.1009516. eCollection 2021 Nov.
7
Physical mechanisms of red blood cell splenic filtration.
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2300095120. doi: 10.1073/pnas.2300095120. Epub 2023 Oct 24.
8
Pitting of malaria parasites in microfluidic devices mimicking spleen interendothelial slits.
Sci Rep. 2021 Nov 11;11(1):22099. doi: 10.1038/s41598-021-01568-w.
9
A biomimetic microfluidic chip to study the circulation and mechanical retention of red blood cells in the spleen.
Am J Hematol. 2015 Apr;90(4):339-45. doi: 10.1002/ajh.23941. Epub 2015 Feb 2.
10
Erythrocyte flow through the interendothelial slits of the splenic venous sinus.
Biomech Model Mechanobiol. 2021 Dec;20(6):2227-2245. doi: 10.1007/s10237-021-01503-y. Epub 2021 Sep 18.

引用本文的文献

1
Organ-on-chip platforms for nanoparticle toxicity and efficacy assessment: Advancing beyond traditional in vitro and in vivo models.
Mater Today Bio. 2025 Jul 4;33:102053. doi: 10.1016/j.mtbio.2025.102053. eCollection 2025 Aug.
2
Biomechanics of phagocytosis of red blood cells by macrophages in the human spleen.
Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2414437121. doi: 10.1073/pnas.2414437121. Epub 2024 Oct 25.
3
The dynamics of red blood cells traversing slits of mechanical heart valves under high shear.
Biophys J. 2024 Nov 5;123(21):3780-3797. doi: 10.1016/j.bpj.2024.09.027. Epub 2024 Sep 26.

本文引用的文献

1
A combined computational and experimental investigation of the filtration function of splenic macrophages in sickle cell disease.
PLoS Comput Biol. 2023 Dec 13;19(12):e1011223. doi: 10.1371/journal.pcbi.1011223. eCollection 2023 Dec.
2
Physical mechanisms of red blood cell splenic filtration.
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2300095120. doi: 10.1073/pnas.2300095120. Epub 2023 Oct 24.
3
Circulating cellular clusters are associated with thrombotic complications and clinical outcomes in COVID-19.
iScience. 2023 Jun 25;26(7):107202. doi: 10.1016/j.isci.2023.107202. eCollection 2023 Jul 21.
4
In silico and in vitro study of the adhesion dynamics of erythrophagocytosis in sickle cell disease.
Biophys J. 2023 Jun 20;122(12):2590-2604. doi: 10.1016/j.bpj.2023.05.022. Epub 2023 May 24.
5
Microfluidic study of retention and elimination of abnormal red blood cells by human spleen with implications for sickle cell disease.
Proc Natl Acad Sci U S A. 2023 Feb 7;120(6):e2217607120. doi: 10.1073/pnas.2217607120. Epub 2023 Feb 2.
6
Circulating cell clusters aggravate the hemorheological abnormalities in COVID-19.
Biophys J. 2022 Sep 20;121(18):3309-3319. doi: 10.1016/j.bpj.2022.08.031. Epub 2022 Aug 27.
7
The effect of stiffened diabetic red blood cells on wall shear stress in a reconstructed 3D microaneurysm.
Comput Methods Biomech Biomed Engin. 2022 Nov;25(15):1691-1709. doi: 10.1080/10255842.2022.2034794. Epub 2022 Feb 24.
8
Erythrocyte flow through the interendothelial slits of the splenic venous sinus.
Biomech Model Mechanobiol. 2021 Dec;20(6):2227-2245. doi: 10.1007/s10237-021-01503-y. Epub 2021 Sep 18.
9
Concise review: how do red blood cells born, live, and die?
Ann Hematol. 2021 Oct;100(10):2425-2433. doi: 10.1007/s00277-021-04575-z. Epub 2021 Aug 3.
10
Margination and adhesion dynamics of tumor cells in a real microvascular network.
PLoS Comput Biol. 2021 Feb 19;17(2):e1008746. doi: 10.1371/journal.pcbi.1008746. eCollection 2021 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验