Suppr超能文献

数据驱动的离散分数阶混沌系统、新数值格式与深度学习

Data-driven discrete fractional chaotic systems, new numerical schemes and deep learning.

作者信息

Wu Guo-Cheng, Wu Zhi-Qiang, Zhu Wei

机构信息

Key Laboratory of Intelligent Analysis and Decision on Complex Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China.

出版信息

Chaos. 2024 Sep 1;34(9). doi: 10.1063/5.0218662.

Abstract

Parameter estimation is important in data-driven fractional chaotic systems. Less work has been reported due to challenges in discretization of fractional calculus operators. In this paper, several numerical schemes are newly derived for delay fractional difference equations of Caputo and Riemann-Liouville types. Then, loss functions are constructed and unknown parameters of the discrete fractional chaotic system are estimated by a neural network method. Parameter estimation results demonstrate high accuracy compared with real values. Robust analysis is provided under different noise levels. It can be concluded that this paper provides an efficient deep learning method based on fractional discrete-time systems.

摘要

参数估计在数据驱动的分数阶混沌系统中很重要。由于分数阶微积分算子离散化方面的挑战,相关研究报道较少。本文针对Caputo型和Riemann-Liouville型的时滞分数阶差分方程新推导了几种数值格式。然后,构建损失函数,并通过神经网络方法估计离散分数阶混沌系统的未知参数。参数估计结果与实际值相比显示出高精度。在不同噪声水平下进行了鲁棒性分析。可以得出结论,本文基于分数阶离散时间系统提供了一种有效的深度学习方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验