Zhang Jian, Quast Thomas, Eid Bashir, Chen Yen-Ting, Zerdoumi Ridha, Dieckhöfer Stefan, Junqueira João R C, Seisel Sabine, Schuhmann Wolfgang
Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitsätsstr. 150, 44780, Bochum, Germany.
Center for Solvation Science (ZEMOS), Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany.
Nat Commun. 2024 Oct 3;15(1):8583. doi: 10.1038/s41467-024-52780-x.
The electroreduction of nitrate offers a promising, sustainable, and decentralized route to generate valuable ammonia. However, a key challenge in the nitrate reduction reaction is the energy efficiency of the reaction, which requires both a high ammonia yield rate and a high Faradaic efficiency of ammonia at a low working potential (≥-0.2 V versus reversible hydrogen electrode). We propose a bimetallic Co-B/Ru electrocatalyst which utilizes complementary effects of Co-B and Ru to modulate the quantity of adsorbed hydrogen and to favor the specific hydrogenation for initiating nitrate reduction reaction at a low overpotential. This effect enables the catalyst to achieve a Faradaic efficiency for ammonia of 90.4 ± 9.2% and a remarkable half-cell energy efficiency of 40.9 ± 4% at 0 V versus reversible hydrogen electrode. The in-situ electrochemical reconstruction of the catalyst contributes to boosting the ammonia yield rate to a high level of 15.0 ± 0.7 mg h cm at -0.2 V versus reversible hydrogen electrode. More importantly, by employing single-entity electrochemistry coupled with identical location transmission electron microscopy, we gain systematic insights into the correlation between the increase in the catalyst's active sites and its structural transformations during the nitrate reduction reaction.
硝酸盐的电还原为生成有价值的氨提供了一条有前景、可持续且分散的途径。然而,硝酸盐还原反应中的一个关键挑战是反应的能量效率,这需要在低工作电势(相对于可逆氢电极≥ -0.2 V)下同时具备高的氨产率和高的氨法拉第效率。我们提出了一种双金属Co-B/Ru电催化剂,它利用Co-B和Ru的互补效应来调节吸附氢的量,并有利于在低过电势下引发硝酸盐还原反应的特定氢化作用。这种效应使该催化剂在相对于可逆氢电极0 V时实现了90.4 ± 9.2%的氨法拉第效率和40.9 ± 4%的显著半电池能量效率。在相对于可逆氢电极-0.2 V时,该催化剂的原位电化学重构有助于将氨产率提高到15.0 ± 0.7 mg h cm的高水平。更重要的是,通过采用单实体电化学与相同位置透射电子显微镜相结合的方法,我们对硝酸盐还原反应过程中催化剂活性位点的增加与其结构转变之间的相关性有了系统的认识。