Suppr超能文献

氧化物/氢氧化物纳米片的设计功能:元素置换/掺杂。

Designed functions of oxide/hydroxide nanosheets elemental replacement/doping.

作者信息

Saito Kanji, Morita Masashi, Okada Tomohiko, Wijitwongwan Rattanawadee Ploy, Ogawa Makoto

机构信息

Department of Materials Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan.

Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0054, Japan.

出版信息

Chem Soc Rev. 2024 Oct 28;53(21):10523-10574. doi: 10.1039/d4cs00339j.

Abstract

Partial replacement of one structural element in a solid with another of a similar size was conducted to impart functionality to the solids and modify their properties. This phenomenon is found in nature in coloured gemstones and clay minerals and is used in materials chemistry and physics, endowing materials with useful properties that can be controlled by incorporated heteroelements and their amounts. Depending on the area of research (or expected functions), the replacement is referred to as "isomorphous substitution", "doping", Herein, elemental replacement in two-dimensional (2D) oxides and hydroxides (nanosheets or layered materials) is summarised with emphasis on the uniqueness of their preparation, characterisation and application compared with those of the corresponding bulk materials. Among the 2D materials (graphene, metallenes, transition metal chalcogenides, metal phosphate/phosphonates, MXenes, ), 2D oxides and hydroxides are characterised by their presence in nature, facile synthesis and storage under ambient conditions, and possible structural variation from atomic-level nanosheets to thicker nanosheets composed of multilayered structures. The heteroelements to be doped were selected depending on the target application objectively; however, there are structural and synthetic limitations in the doping of heteroelements. In the case of layered double hydroxides (single layer) and layered alkali silicates (from single layer to multiple layers), including layered clay minerals (2 : 1 layer), the replacement (commonly called isomorphous substitution) is discussed to understand/design characteristics such as catalytic, adsorptive (including ion exchange), and swelling properties. Due to the variation in their main components, the design of layered transition metal oxide/hydroxide materials isomorphous substitution is more versatile; in this case, tuning their band structure, doping both holes and electrons, and creating impurity levels are examined by the elemental replacement of the main components. As typical examples, material design for the photocatalytic function of an ion-exchangeable layered titanate (lepidocrocite-type titanate) and a perovskite niobate (KCaNbO) is discussed, where elemental replacement is effective in designing their multiple functions.

摘要

通过用另一种尺寸相似的结构元素部分替代固体中的一种结构元素,来赋予固体功能性并改变其性质。这种现象在天然有色宝石和粘土矿物中存在,并应用于材料化学和物理学中,使材料具有可通过掺入杂元素及其含量来控制的有用性质。根据研究领域(或预期功能),这种替代被称为“同晶取代”“掺杂”。在此,总结二维(2D)氧化物和氢氧化物(纳米片或层状材料)中的元素替代,重点强调其与相应块状材料相比在制备、表征和应用方面的独特性。在二维材料(石墨烯、金属烯、过渡金属硫属化物、金属磷酸盐/膦酸盐、MXenes等)中,二维氧化物和氢氧化物的特点是在自然界中存在、在环境条件下易于合成和储存,以及可能从原子级纳米片到由多层结构组成的更厚纳米片的结构变化。根据目标应用客观地选择要掺杂的杂元素;然而,杂元素的掺杂存在结构和合成方面的限制。对于层状双氢氧化物(单层)和层状碱金属硅酸盐(从单层到多层),包括层状粘土矿物(2∶1层),讨论这种替代(通常称为同晶取代)以理解/设计诸如催化、吸附(包括离子交换)和膨胀性质等特性。由于其主要成分的变化,层状过渡金属氧化物/氢氧化物材料的同晶取代设计更具通用性;在这种情况下,通过主要成分的元素替代来研究调整其能带结构、同时掺杂空穴和电子以及产生杂质能级。作为典型例子,讨论了可离子交换层状钛酸盐(纤铁矿型钛酸盐)和钙钛矿铌酸盐(KCaNbO)光催化功能的材料设计,其中元素替代在设计其多种功能方面是有效的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验