Department of Life Science, Biomedi Campus, Dongguk University-Seoul, Goyang-si, Gyeonggi-do, Korea.
PLoS One. 2024 Oct 7;19(10):e0311594. doi: 10.1371/journal.pone.0311594. eCollection 2024.
Pulmonary fibrosis is characterized by excessive extracellular matrix (ECM) accumulation caused by detrimental stimuli. The progressive impairment in lung functions is chronic and highly fatal, presenting itself as a global health challenge. Because of the lack of efficacious treatments, the underlying mechanism should be investigated. The progression of fibrosis involves transforming growth factor-beta 1 (TGF-β1), which accelerates ECM production via epithelial-mesenchymal transition and cell invasion. As microRNAs (miRNAs) serve as regulators of disease development and progression, this study aimed to investigate the interaction of miRNAs and target genes that could contribute to pulmonary fibrosis when exposed to TGF-β1. Differentially expressed mRNA and miRNA were identified in respiratory epithelial cells via transcriptome analysis by using the constructed TGF-β1-induced fibrosis model. Our results revealed a significant increase in the expression of thrombospondin 1 (THBS1), which participates in TGF-β1 activation, where THBS1 was identified as a core gene in protein interactions analyzed through bioinformatics. The expression of miR-335-3p, which targets 3'-UTR of THBS1, substantially decreased upon TGF-β1 treatment. The TGF-β1 downstream signal was suppressed by inhibiting the interaction between TGF-β1 and THBS1, consequently alleviating fibrosis. When the miR-335-3p mimic was transfected in TGF-β1-treated respiratory epithelial cells, THBS1 and fibrosis markers were downregulated, while the introduction of miR-335-3p inhibitor exhibited a reverse phenomenon. Our findings demonstrated that TGF-β1 exposure to respiratory epithelial cells led to a decrease in miR-335-3p expression, resulting in the upregulation of THBS1 and ultimately exacerbating fibrosis. This study provides insights into TGF-β1-induced pulmonary fibrosis, suggesting new therapeutic targets and mechanisms.
肺纤维化的特征是有害刺激引起的细胞外基质(ECM)过度积累。肺功能的进行性损害是慢性的,高度致命的,这是一个全球性的健康挑战。由于缺乏有效的治疗方法,应该研究其潜在机制。纤维化的进展涉及转化生长因子-β1(TGF-β1),它通过上皮间质转化和细胞侵袭加速 ECM 的产生。由于 microRNAs(miRNAs)作为疾病发展和进展的调节剂,本研究旨在研究 miRNA 和靶基因的相互作用,这些基因在暴露于 TGF-β1 时可能导致肺纤维化。通过使用构建的 TGF-β1 诱导的纤维化模型,通过转录组分析在呼吸上皮细胞中鉴定差异表达的 mRNA 和 miRNA。我们的结果表明,血小板反应蛋白 1(THBS1)的表达显著增加,THBS1 参与 TGF-β1 的激活,THBS1 被确定为通过生物信息学分析的蛋白质相互作用中的核心基因。miR-335-3p 的表达显著降低,其靶向 THBS1 的 3'-UTR。通过抑制 TGF-β1 和 THBS1 之间的相互作用抑制 TGF-β1 下游信号,从而减轻纤维化。当 miR-335-3p 模拟物转染 TGF-β1 处理的呼吸上皮细胞时,THBS1 和纤维化标志物下调,而引入 miR-335-3p 抑制剂则表现出相反的现象。我们的研究结果表明,TGF-β1 暴露于呼吸上皮细胞导致 miR-335-3p 表达降低,导致 THBS1 上调,最终加重纤维化。本研究为 TGF-β1 诱导的肺纤维化提供了新的见解,为新的治疗靶点和机制提供了依据。