Gupta Neelam, Kumar Shubham, Rani Shivani, Kumari Puja, Kar Subhasmita, Ahuja Rajeev, Jyoti Ray Soumya
Department of Physics, Indian Institute of Technology Patna, Bihta 801103, India.
Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
J Phys Condens Matter. 2024 Nov 1;37(4). doi: 10.1088/1361-648X/ad84a8.
In the past few decades, two-dimensional materials gained huge deliberation due to their outstanding electronic and heat transport properties. These materials have effective applications in many areas such as photodetectors, battery electrodes, thermoelectrics, etc. In this work, we have calculated structural, electronic, optical, and thermoelectric (TE) properties of KCuX (X = S, Se, Te) monolayers (MLs) with the help of first-principles-based calculations and semi-classical Boltzmann transport equation. The phonon dispersion calculations demonstrate the dynamical stability of the KCuX (X = S, Se, Te) MLs. Our results show that the MLs of KCuX (X = S, Se, Te) are semiconductors with band gaps of 0.193 eV, 0.26 eV, and 1.001 eV respectively, and therefore they are suitable for photovoltaic applications. The optical analysis illustrates that the maximum absorption peaks of the KCuX (X = S, Se, Te) MLs are located in the visible and ultraviolet regions, which may serve as a promising candidate for designing advanced optoelectronic devices. Furthermore, thermoelectric properties of the KCuS and KCuSe MLs, including Seebeck coefficient, electrical conductivity, electronic thermal conductivity, power factor and figure of merit are calculated at different temperatures of 300 K, 600 K, and 800 K. Additionally, we also focus on the analysis of Grüneisen parameter and various scattering rates to further explain their ultra-low thermal conductivity. Our results show that KCuS and KCuSe possess ultra-low lattice thermal conductivity value of 0.15Wm-1K-1and 0.06Wm-1K-1respectively, which is lower than those of recently reported KAgSe (0.26Wm-1K-1at 300 K) and TlCuSe (0.44Wm-1K-1at 300 K), indicating towards the large value of ZT. These materials are found to possess desirable thermoelectric and optical properties, making them suitable candidates for efficient thermoelectric and optoelectronic device applications.
在过去几十年中,二维材料因其出色的电子和热输运特性而受到广泛关注。这些材料在光电探测器、电池电极、热电学等许多领域都有有效的应用。在这项工作中,我们借助基于第一性原理的计算和半经典玻尔兹曼输运方程,计算了KCuX(X = S、Se、Te)单层(MLs)的结构、电子、光学和热电(TE)特性。声子色散计算证明了KCuX(X = S、Se、Te)MLs的动力学稳定性。我们的结果表明,KCuX(X = S、Se、Te)的MLs是半导体,带隙分别为0.193 eV、0.26 eV和1.001 eV,因此它们适用于光伏应用。光学分析表明,KCuX(X = S、Se、Te)MLs的最大吸收峰位于可见光和紫外区域,这使其有望成为设计先进光电器件的候选材料。此外,在300 K、600 K和800 K的不同温度下,计算了KCuS和KCuSe MLs的热电特性,包括塞贝克系数、电导率、电子热导率、功率因数和优值。此外,我们还着重分析了格林艾森参数和各种散射率,以进一步解释它们的超低热导率。我们的结果表明,KCuS和KCuSe的晶格热导率极低,分别为0.15Wm-1K-1和0.06Wm-1K-1,低于最近报道的KAgSe(300 K时为0.26Wm-1K-1)和TlCuSe(300 K时为0.44Wm-1K-1),表明其具有较大的ZT值。发现这些材料具有理想的热电和光学特性,使其成为高效热电和光电器件应用的合适候选材料。