Suppr超能文献

使用电子健康记录数据通过ChatGPT辅助对微创青光眼手术后的出血情况进行分类

ChatGPT-Assisted Classification of Postoperative Bleeding Following Microinvasive Glaucoma Surgery Using Electronic Health Record Data.

作者信息

Shaheen Abdulla, Afflitto Gabriele Gallo, Swaminathan Swarup S

机构信息

Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, Florida.

Ophthalmology Unit, Department of Experimental Medicine, Università di Roma "Tor Vergata," Rome, Italy.

出版信息

Ophthalmol Sci. 2024 Aug 23;5(1):100602. doi: 10.1016/j.xops.2024.100602. eCollection 2025 Jan-Feb.

Abstract

PURPOSE

To evaluate the performance of a large language model (LLM) in classifying electronic health record (EHR) text, and to use this classification to evaluate the type and resolution of hemorrhagic events (HEs) after microinvasive glaucoma surgery (MIGS).

DESIGN

Retrospective cohort study.

PARTICIPANTS

Eyes from the Bascom Palmer Glaucoma Repository.

METHODS

Eyes that underwent MIGS between July 1, 2014 and February 1, 2022 were analyzed. Chat Generative Pre-trained Transformer (ChatGPT) was used to classify deidentified EHR anterior chamber examination text into HE categories (no hyphema, microhyphema, clot, and hyphema). Agreement between classifications by ChatGPT and a glaucoma specialist was evaluated using Cohen's Kappa and precision-recall (PR) curve. Time to resolution of HEs was assessed using Cox proportional-hazards models. Goniotomy HE resolution was evaluated by degree of angle treatment (90°-179°, 180°-269°, 270°-360°). Logistic regression was used to identify HE risk factors.

MAIN OUTCOME MEASURES

Accuracy of ChatGPT HE classification and incidence and resolution of HEs.

RESULTS

The study included 434 goniotomy eyes (368 patients) and 528 Schlemm's canal stent (SCS) eyes (390 patients). Chat Generative Pre-trained Transformer facilitated excellent HE classification (Cohen's kappa 0.93, area under PR curve 0.968). Using ChatGPT classifications, at postoperative day 1, HEs occurred in 67.8% of goniotomy and 25.2% of SCS eyes ( < 0.001). The 270° to 360° goniotomy group had the highest HE rate (84.0%,  < 0.001). At postoperative week 1, HEs were observed in 43.4% and 11.3% of goniotomy and SCS eyes, respectively ( < 0.001). By postoperative month 1, HE rates were 13.3% and 1.3% among goniotomy and SCS eyes, respectively ( < 0.001). Time to HE resolution differed between the goniotomy angle groups (log-rank  = 0.034); median time to resolution was 10, 10, and 15 days for the 90° to 179°, 180° to 269°, and 270° to 360° groups, respectively. Risk factor analysis demonstrated greater goniotomy angle was the only significant predictor of HEs (odds ratio for 270°-360°: 4.08,  < 0.001).

CONCLUSIONS

Large language models can be effectively used to classify longitudinal EHR free-text examination data with high accuracy, highlighting a promising direction for future LLM-assisted research and clinical decision support. Hemorrhagic events are relatively common self-resolving complications that occur more often in goniotomy cases and with larger goniotomy treatments. Time to HE resolution differs significantly between goniotomy groups.

FINANCIAL DISCLOSURES

Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

摘要

目的

评估大语言模型(LLM)对电子健康记录(EHR)文本进行分类的性能,并利用该分类评估微创青光眼手术(MIGS)后出血事件(HEs)的类型和解决情况。

设计

回顾性队列研究。

参与者

来自巴斯科姆帕尔默青光眼资料库的眼睛。

方法

分析2014年7月1日至2022年2月1日期间接受MIGS的眼睛。使用聊天生成预训练变换器(ChatGPT)将去识别化的EHR前房检查文本分类为HE类别(无前房积血、微量前房积血、血凝块和前房积血)。使用科恩kappa系数和精确召回率(PR)曲线评估ChatGPT分类与青光眼专家分类之间的一致性。使用Cox比例风险模型评估HEs的解决时间。通过角度治疗程度(90°-179°、180°-269°、270°-360°)评估房角切开术HEs的解决情况。使用逻辑回归确定HEs的危险因素。

主要观察指标

ChatGPT对HEs分类的准确性以及HEs的发生率和解决情况。

结果

该研究纳入了434只接受房角切开术的眼睛(368例患者)和528只施累姆管支架(SCS)植入术的眼睛(390例患者)。聊天生成预训练变换器实现了出色的HEs分类(科恩kappa系数0.93,PR曲线下面积0.968)。根据ChatGPT分类,术后第1天,房角切开术组中67.8%的眼睛和SCS植入术组中25.2%的眼睛发生了HEs(P<0.001)。270°至360°房角切开术组的HEs发生率最高(84.0%,P<0.001)。术后第1周,房角切开术组和SCS植入术组中分别有43.4%和11.3%的眼睛观察到HEs(P<0.001)。到术后第1个月,房角切开术组和SCS植入术组的HEs发生率分别为13.3%和1.3%(P<0.001)。房角切开术角度组之间HEs的解决时间存在差异(对数秩检验=0.034);90°至179°、180°至269°和270°至360°组的中位解决时间分别为10天、10天和15天。危险因素分析表明,更大的房角切开术角度是HEs的唯一显著预测因素(270°-360°的优势比:4.08,P<0.001)。

结论

大语言模型可有效地用于高精度地对纵向EHR自由文本检查数据进行分类,为未来LLM辅助研究和临床决策支持指明了一个有前景的方向。出血事件是相对常见的可自行解决的并发症,在房角切开术病例中更常发生,且房角切开术治疗范围越大发生率越高。房角切开术组之间HEs的解决时间有显著差异。

财务披露

在本文末尾的脚注和披露中可能会找到专有或商业披露信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/905f/11459071/25e6576760a0/gr1.jpg

相似文献

1
ChatGPT-Assisted Classification of Postoperative Bleeding Following Microinvasive Glaucoma Surgery Using Electronic Health Record Data.
Ophthalmol Sci. 2024 Aug 23;5(1):100602. doi: 10.1016/j.xops.2024.100602. eCollection 2025 Jan-Feb.
2
Refractive Outcomes Following Combined Cataract and Microinvasive Glaucoma Surgery.
Ophthalmol Glaucoma. 2024 Nov-Dec;7(6):608-614. doi: 10.1016/j.ogla.2024.07.003. Epub 2024 Jul 14.
3
Effectiveness of Microinvasive Glaucoma Surgery in the United States: Intelligent Research in Sight Registry Analysis 2013-2019.
Ophthalmology. 2023 Mar;130(3):242-255. doi: 10.1016/j.ophtha.2022.10.021. Epub 2022 Oct 29.
4
5
Combined Microinvasive Glaucoma Surgery With Phacoemulsification in Open-Angle Glaucoma: A Systematic Review and Meta-analysis.
Am J Ophthalmol. 2025 Feb;270:154-163. doi: 10.1016/j.ajo.2024.07.034. Epub 2024 Jul 31.
6
Risk factors for hyphema following goniotomy or trabecular bypass stent placement combined with phacoemulsification.
Graefes Arch Clin Exp Ophthalmol. 2025 Mar;263(3):781-786. doi: 10.1007/s00417-024-06647-y. Epub 2024 Oct 5.
9
Six-Month Outcomes of Goniotomy Performed with a Trapezoidal Dual Blade in Combination with Cataract Surgery.
Clin Ophthalmol. 2024 Sep 19;18:2619-2625. doi: 10.2147/OPTH.S476076. eCollection 2024.

引用本文的文献

1
Large language models in the management of chronic ocular diseases: a scoping review.
Front Cell Dev Biol. 2025 Jun 18;13:1608988. doi: 10.3389/fcell.2025.1608988. eCollection 2025.

本文引用的文献

2
Performance of Linear Mixed Models in Estimating Structural Rates of Glaucoma Progression Using Varied Random Effect Distributions.
Ophthalmol Sci. 2023 Dec 13;4(3):100454. doi: 10.1016/j.xops.2023.100454. eCollection 2024 May-Jun.
3
Using Natural Language Processing to Identify Different Lens Pathology in Electronic Health Records.
Am J Ophthalmol. 2024 Jun;262:153-160. doi: 10.1016/j.ajo.2024.01.030. Epub 2024 Feb 1.
4
Zero-shot information extraction from radiological reports using ChatGPT.
Int J Med Inform. 2024 Mar;183:105321. doi: 10.1016/j.ijmedinf.2023.105321. Epub 2023 Dec 21.
5
Extracting symptoms from free-text responses using ChatGPT among COVID-19 cases in Hong Kong.
Clin Microbiol Infect. 2024 Jan;30(1):142.e1-142.e3. doi: 10.1016/j.cmi.2023.11.002. Epub 2023 Nov 8.
6
Minimally Invasive Glaucoma Surgery.
Int Ophthalmol Clin. 2023 Oct 1;63(4):33-60. doi: 10.1097/IIO.0000000000000479. Epub 2023 Sep 27.
7
Potential of ChatGPT and GPT-4 for Data Mining of Free-Text CT Reports on Lung Cancer.
Radiology. 2023 Sep;308(3):e231362. doi: 10.1148/radiol.231362.
8
Influence of Goniotomy Size on Treatment Safety and Efficacy for Primary Open-Angle Glaucoma: A Multicenter Study.
Am J Ophthalmol. 2023 Dec;256:118-125. doi: 10.1016/j.ajo.2023.08.002. Epub 2023 Aug 11.
9
Using ChatGPT in Medical Research: Current Status and Future Directions.
J Multidiscip Healthc. 2023 May 30;16:1513-1520. doi: 10.2147/JMDH.S413470. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验