Xu Hong, Elhabian Shireen Y
Scientific Computing and Imaging Institute, Kahlert School of Computing, University of Utah, Salt Lake City, UT, USA.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/ISBI56570.2024.10635852. Epub 2024 Aug 22.
Particle-based shape modeling (PSM) is a popular approach to automatically quantify shape variability in populations of anatomies. The PSM family of methods employs optimization to automatically populate a dense set of corresponding particles (as pseudo landmarks) on 3D surfaces to allow subsequent shape analysis. A recent deep learning approach leverages implicit radial basis function representations of shapes to better adapt to the underlying complex geometry of anatomies. Here, we propose an adaptation of this method using a traditional optimization approach that allows more precise control over the desired characteristics of models by leveraging both an eigenshape and a correspondence loss. Furthermore, the proposed approach avoids using a black-box model and allows more freedom for particles to navigate the underlying surfaces, yielding more informative statistical models. We demonstrate the efficacy of the proposed approach to state-of-the-art methods on two real datasets and justify our choice of losses empirically.
基于粒子的形状建模(PSM)是一种用于自动量化解剖结构群体中形状变异性的流行方法。PSM方法家族采用优化算法,在三维表面上自动填充一组密集的对应粒子(作为伪地标),以便进行后续的形状分析。最近的一种深度学习方法利用形状的隐式径向基函数表示,以更好地适应解剖结构潜在的复杂几何形状。在此,我们提出一种对该方法的改进,使用传统的优化方法,通过利用特征形状和对应损失,对模型的期望特性进行更精确的控制。此外,所提出的方法避免使用黑箱模型,并为粒子在潜在表面上移动提供了更大的自由度,从而产生更具信息量的统计模型。我们在两个真实数据集上证明了所提出方法相对于现有方法的有效性,并通过实验证明了我们对损失函数的选择是合理的。