Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
Anal Chem. 2024 Oct 22;96(42):17013-17020. doi: 10.1021/acs.analchem.4c04477. Epub 2024 Oct 11.
Accurate and reliable detection of uracil-DNA glycosylase (UDG) activity is crucial for clinical diagnosis and prognosis assessment. However, current techniques for accurately monitoring UDG activity still face significant challenges due to the single input or output signal modes. Here, we develop a sequentially activated-dumbbell DNA nanodevice (SEAD) that enables precise and reliable evaluation of UDG activity through primer exchange reactions (PER)-based orthogonal signal output. The SEAD incorporates a double-hairpin structure with a stem containing two deoxyuridine (dU) sites for target recognition and two preblocked primer binding regions for target amplification and signal output. Upon UDG recognition of dU, the SEAD can be cleaved by apurinic/apyrimidinic endonuclease 1 (APE1), generating two different hairpins with exposed primer binding regions. These hairpins serve as templates to initiate the parallel PER, enabling the extending of two different amplification products: a long single-stranded DNA (ssDNA) with repetitive sequences and a short ferrocene-labeled ssDNA with complementary sequences. These products further self-assemble into DNA nano-strings in an orthogonal manner that act as an electrochemiluminescence signal switch, enabling precise detection of low-abundance UDG. This work develops a sequential input and orthogonal output strategy for accurately monitoring UDG activity, highlighting the significant potential in cancer diagnosis and treatment.
准确可靠地检测尿嘧啶-DNA 糖基化酶 (UDG) 的活性对于临床诊断和预后评估至关重要。然而,由于单一的输入或输出信号模式,当前用于准确监测 UDG 活性的技术仍然面临重大挑战。在这里,我们开发了一种顺序激活哑铃 DNA 纳米器件 (SEAD),通过基于引物交换反应 (PER) 的正交信号输出,实现对 UDG 活性的精确可靠评估。SEAD 采用双发夹结构,茎部含有两个脱氧尿嘧啶 (dU) 位点用于目标识别,以及两个预先封闭的引物结合区域用于目标扩增和信号输出。在 UDG 识别 dU 后,SEAD 可以被脱嘌呤/脱嘧啶内切酶 1 (APE1) 切割,生成两个具有暴露的引物结合区域的不同发夹。这些发夹作为模板启动平行 PER,从而引发两种不同的扩增产物:具有重复序列的长单链 DNA (ssDNA) 和具有互补序列的短二茂铁标记 ssDNA。这些产物进一步以正交方式自组装成 DNA 纳米线,充当电化学发光信号开关,能够精确检测低丰度的 UDG。这项工作开发了一种顺序输入和正交输出的策略,用于准确监测 UDG 活性,突出了其在癌症诊断和治疗方面的巨大潜力。