Suppr超能文献

基于近红外光谱和化学计量学的天麻产地溯源研究。

Geographic traceability of Gastrodia elata Blum based on combination of NIRS and Chemometrics.

机构信息

College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.

College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China.

出版信息

Food Chem. 2025 Feb 1;464(Pt 1):141529. doi: 10.1016/j.foodchem.2024.141529. Epub 2024 Oct 9.

Abstract

The content of the active ingredient in G. elata Bl. is affected by the soil and climate of different regions, so geographical traceability is essential to ensure its quality, commercial value. This study used a combination of NIRS and various chemometric methods to establish an effective geotraceability method for G. elata Bl.. Firstly, a traditional machine learning model was built based on the SF dataset NIRS, and a ResNet model was built based on NIRS generated 2DCOS images and 3DCOS images. Secondly, the model performance was validated using the ZT dataset. The results show that the 3DCOS-ResNet model performs the best with 100.00 % and 95.45 % test set and EV accuracy, respectively. This study provides a theoretical basis for regulators to quickly ensure the authenticity of G. elata Bl. sources. However, more data and in-depth studies are needed in the future to validate and improve the applicability of the model.

摘要

天麻中活性成分的含量受不同地区土壤和气候的影响,因此地理溯源对于保证其质量和商业价值至关重要。本研究采用 NIRS 结合多种化学计量学方法,为天麻建立了一种有效的地理溯源方法。首先,基于 SF 数据集的 NIRS 建立了传统机器学习模型,基于 NIRS 生成的 2DCOS 图像和 3DCOS 图像建立了 ResNet 模型。其次,使用 ZT 数据集验证模型性能。结果表明,3DCOS-ResNet 模型的测试集和 EV 准确率分别达到 100.00%和 95.45%,性能最佳。本研究为监管机构快速确保天麻来源的真实性提供了理论依据。然而,未来需要更多的数据和深入研究来验证和提高模型的适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验