Suppr超能文献

通过深度学习模型从脑电图信号中识别精神疾病

Psychiatric disorders from EEG signals through deep learning models.

作者信息

Ahmed Zaeem, Wali Aamir, Shahid Saman, Zikria Shahid, Rasheed Jawad, Asuroglu Tunc

机构信息

Department of Data Sciences, National University of Computer & Emerging Sciences (NUCES), FAST Lahore Campus, Punjab, Pakistan.

Department of Sciences & Humanities, National University of Computer & Emerging Sciences (NUCES), FAST Lahore Campus, Punjab, Pakistan.

出版信息

IBRO Neurosci Rep. 2024 Sep 24;17:300-310. doi: 10.1016/j.ibneur.2024.09.003. eCollection 2024 Dec.

Abstract

Psychiatric disorders present diagnostic challenges due to individuals concealing their genuine emotions, and traditional methods relying on neurophysiological signals have limitations. Our study proposes an improved EEG-based diagnostic model employing Deep Learning (DL) techniques to address this. By experimenting with DL models on EEG data, we aimed to enhance psychiatric disorder diagnosis, offering promising implications for medical advancements. We utilized a dataset of 945 individuals, including 850 patients and 95 healthy subjects, focusing on six main and nine specific disorders. Quantitative EEG data were analyzed during resting states, featuring power spectral density (PSD) and functional connectivity (FC) across various frequency bands. Employing artificial neural networks (ANN), K nearest neighbors (KNN), Long short-term memory (LSTM), bidirectional Long short-term memory (Bi LSTM), and a hybrid CNN-LSTM model, we performed binary classification. Remarkably, all proposed models outperformed previous approaches, with the ANN achieving 96.83 % accuracy for obsessive-compulsive disorder using entire band features. CNN-LSTM attained the same accuracy for adjustment disorder, while KNN and LSTM achieved 98.94 % accuracy for acute stress disorder using specific feature sets. Notably, KNN and Bi-LSTM models reached 97.88 % accuracy for predicting obsessive-compulsive disorder. These findings underscore the potential of EEG as a cost-effective and accessible diagnostic tool for psychiatric disorders, complementing traditional methods like MRI. Our study's advanced DL models show promise in enhancing psychiatric disorder detection and monitoring, with significant implications for clinical application, inspiring hope for improved patient care and outcomes. The potential of EEG as a diagnostic tool for psychiatric disorders is substantial, as it can lead to improved patient care and outcomes in the field of psychiatry.

摘要

精神疾病由于个体隐藏真实情感而带来诊断挑战,且依赖神经生理信号的传统方法存在局限性。我们的研究提出一种改进的基于脑电图(EEG)的诊断模型,采用深度学习(DL)技术来解决这一问题。通过在EEG数据上对DL模型进行实验,我们旨在提高精神疾病的诊断水平,为医学进步提供有前景的启示。我们使用了一个包含945名个体的数据集,其中包括850名患者和95名健康受试者,重点关注六种主要疾病和九种特定疾病。在静息状态下分析了定量EEG数据,其特征为不同频段的功率谱密度(PSD)和功能连接性(FC)。我们采用人工神经网络(ANN)、K近邻(KNN)、长短期记忆(LSTM)、双向长短期记忆(Bi LSTM)以及一种混合的卷积神经网络-长短期记忆(CNN-LSTM)模型进行二元分类。值得注意的是,所有提出的模型都优于先前的方法,ANN使用全频段特征对强迫症的诊断准确率达到96.83%。CNN-LSTM对适应障碍达到了相同准确率,而KNN和LSTM使用特定特征集对急性应激障碍的诊断准确率达到98.94%。值得注意的是,KNN和Bi-LSTM模型对强迫症的预测准确率达到97.88%。这些发现强调了EEG作为一种经济高效且易于获取的精神疾病诊断工具的潜力,可作为磁共振成像(MRI)等传统方法的补充。我们研究中的先进DL模型在增强精神疾病检测和监测方面显示出前景,对临床应用具有重要意义,为改善患者护理和治疗效果带来了希望。EEG作为精神疾病诊断工具的潜力巨大,因为它可以在精神病学领域改善患者护理和治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9169/11466652/78439ef9501a/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验